Tìm GTNN của biểu thức A= \(|x-2|+|x+\frac{1}{2}|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
\(A=\frac{x^2+2x+3}{x^2+4x+4}-\frac{2}{3}+\frac{2}{3}\)
\(=\frac{x^2-2x+1}{\left(x+2\right)^2}+\frac{2}{3}\)
\(=\frac{\left(x-1\right)^2}{\left(x+2\right)^2}+\frac{2}{3}\)
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(x+2\right)^2\ge0\end{cases}\Rightarrow\frac{\left(x-1\right)^2}{\left(x+2\right)^2}\ge0}\)
Dấu '' ='' xảy ra khi và chỉ khi x=1
=> Min A =2/3 khi x=1
dạng bài này bn có thể dùng miền giá trị hàm để tách nhé(cái này chỉ làm nháp thôi)
(Chú ý phương trình bậc 2 :ax2+bx+c=0.Phương trình có \(\Delta=b^2-4ac\)(\(\Delta\)là biệt số Đen-ta)
Nếu \(\Delta\ge0\)thì pt có 2 nghiệm
Nếu \(\Delta< 0\)thì pt vô nghiệm
Bài làm
Gọi m là 1 giá trị của \(\frac{x^2-x+1}{x^2+x+1}\)
Ta có m= \(\frac{x^2-x+1}{x^2+x+1}\)
=>m(x2+x+1)=x2-x+1
=>mx2+mx+m-x2+x-1=0 =>(m-1)x2 +(m+1)x+m-1=0(1)
Nếu m=0..............(th này ko phải xét)
Nếu m\(\ne0\)thì pt (1) có nghiệm khi \(\Delta=b^2-4ac\ge0\)
\(\Leftrightarrow\left(m+1\right)^2-4.\left(m-1\right)\left(m-1\right)\ge0\)
\(\Leftrightarrow m^2+2m+1-4m^2+8m-4\ge0\)
\(\Leftrightarrow-3m^2+10m-3\ge0\)\(\Leftrightarrow3m^2-10m+3\le0\)
\(\Leftrightarrow\left(m-3\right)\left(3m-1\right)\le0\)
=> có 2 TH
TH1: m-3\(\le0\)và\(3m-1\ge0\)
=>\(\hept{\begin{cases}m\le3\\m\ge\frac{1}{3}\end{cases}\Leftrightarrow\frac{1}{3}\le m\le3}\)(t/m)(*)
TH2\(\hept{\begin{cases}m-3\ge0\\3m-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ge3\\m\le\frac{1}{3}\end{cases}}}\)(vô lí)(**)
Từ (*),(**) =>\(\frac{1}{3}\le m\le3\)
=>\(\hept{\begin{cases}Min_P=\frac{1}{3}\\Max_P=3\end{cases}}\)
Từ đây bạn tách ngược từ dưới lên.
Nếu ko biết thì nhắn tin cho mk ,mk tách cho
tk mk nha
Ta có :
\(A=\left|x-2\right|+\left|x+\frac{1}{2}\right|=\left|x-2\right|+\left|x-\frac{-1}{2}\right|=\left|x-2\right|+\left|\frac{-1}{2}-x\right|\)
Áp dụng bất đẳng thức giá trị tuyệt đối ta có :
\(A=\left|x-2\right|+\left|\frac{-1}{2}-x\right|\ge\left|x-2+\frac{-1}{2}-x\right|=\left|-2-\frac{1}{2}\right|=\left|\frac{-3}{2}\right|=\frac{3}{2}\)
Dấu "=" xảy ra khi \(\left(x-2\right)\left(\frac{-1}{2}-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-2\ge0\\\frac{-1}{2}-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\le\frac{-1}{2}\end{cases}}}\)
\(\Rightarrow\)\(x\in\left\{\varnothing\right\}\)
Trường hợp 2 :
\(\hept{\begin{cases}x-2\le0\\\frac{-1}{2}-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge\frac{-1}{2}\end{cases}}}\)
\(\Rightarrow\)\(\frac{-1}{2}\le x\le2\)
Vậy \(A_{min}=\frac{3}{2}\) khi \(\frac{-1}{2}\le x\le2\)
Chúc bạn học tốt ~