cho a,b,c là các số thực thỏa mãn :\(a\ge1,b\ge1,c\ge1\)
chứng minh :
\(\frac{1}{2a-1}+\frac{1}{2b-1}+\frac{1}{2c-1}+\frac{4ab}{1+ab}+\frac{4bc}{1+bc}+\frac{4ca}{1+ca}\ge9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT\ge\dfrac{1}{\left(a^2+1\right)-1}+\dfrac{1}{\left(b^2+1\right)-1}+\dfrac{1}{\left(c^2+1\right)-1}+4-\dfrac{4}{ab+1}+4-\dfrac{4}{bc+1}+4-\dfrac{4}{ca+1}\)
\(VT\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{4}{ab+1}-\dfrac{4}{bc+1}-\dfrac{4}{ca+1}+12\)
Mặt khác \(a;b;c\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab+1\ge a+b\) (và tương tự...)
\(\Rightarrow VT\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+12\)
\(VT\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(b+c\right)^2}+\dfrac{4}{\left(c+a\right)^2}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+1+1+1+9\)
\(VT\ge\left(\dfrac{2}{a+b}-1\right)^2+\left(\dfrac{2}{b+c}-1\right)^2+\left(\dfrac{2}{c+a}-1\right)^2+9\ge9\)
* Vì \(a,b\ge1\)nên \(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)
Một cách tương tự: \(bc+1\ge b+c;ca+1\ge c+a\)
Với mọi số thực \(a\ge1\) ta luôn có: \(\left(a-1\right)^2\ge0\Leftrightarrow a^2\ge2a-1\Leftrightarrow\frac{1}{2a-1}\ge\frac{1}{a^2}\)
Tương tự: \(\frac{1}{2b-1}\ge\frac{1}{b^2};\frac{1}{2c-1}\ge\frac{1}{c^2}\)
Từ đó suy ra \(VT\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{4ab}{ab+1}+\frac{4bc}{bc+1}+\frac{4ca}{ca+1}\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+4-\frac{4}{ab+1}+4-\frac{4}{bc+1}+4-\frac{4}{ca+1}\)\(\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}-\frac{4}{ab+1}-\frac{4}{bc+1}-\frac{4}{ca+1}+12\)\(\ge\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}-\frac{4}{a+b}-\frac{4}{b+c}-\frac{4}{c+a}+12\)\(=\left(\frac{2}{a+b}-1\right)^2+\left(\frac{2}{b+c}-1\right)^2+\left(\frac{2}{c+a}-1\right)^2+9\ge9\)
Đẳng thức xảy ra khi a = b = c = 1
\(1-\frac{a^2b}{2+a^2b}\ge1-\frac{a^2b}{3.\sqrt[3]{a^2b}}\)\(\rightarrow1-3\sqrt[3]{a^4b^2}=3.\sqrt[3]{ab.ab.a^2}\rightarrow.....\)
BĐT cần chứng minh tương đương với \(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)
Áp dụng BĐT Cauchy ta có: \(2+a^2b=1+1+a^2b\ge3\sqrt[3]{a^2b}\)
Do đó ta được \(\frac{a^2b}{1+a^2b}\le\frac{a^2b}{3\sqrt[3]{a^2b}}=\frac{a\sqrt[3]{ab^2}}{3}\)
Hoàn toàn tương tự ta được \(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le\frac{a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca}}{3}\)
Cũng theo BĐT Cauchy ta được \(\sqrt[3]{ab^2}\le\frac{a+b+b}{3}=\frac{a+2b}{3}\)
\(\Rightarrow a\sqrt[3]{ab^2}\le\frac{a\left(a+2b\right)}{3}=\frac{a^2+2ab}{3}\)
Tương tự cũng được \(a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca}\le\frac{\left(a+b+c\right)^2}{3}=3\)
Từ đó ta được\(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)
Vậy BĐT được chứng minh. Dấu "=" xảy ra <=> a=b=c=1
Đặt x = \(\frac{1}{2a+1},y=\frac{1}{2b+1},z=\frac{1}{2c+1}\)
Khi đó \(a=\frac{1-x}{2x},b=\frac{1-y}{2y},c=\frac{1-z}{2z}\)
Ta thấy 0 < x, y, z < 1 và x + y + z \(\ge1\)
Bất đẳng thức cần chứng minh trở thành :
\(\frac{x}{3-2x}+\frac{y}{3-2y}+\frac{z}{3-2z}\ge\frac{3}{7}\)
Áp dụng bất đẳng thức Bunhiacốpxki ta có :
\(\frac{x}{3-2x}+\frac{y}{3-2y}+\frac{z}{3-2z}\)
\(=\frac{x^2}{3x-2x^2}+\frac{y^2}{3y-2y^2}+\frac{z^2}{3z-2z^2}\)
\(\ge\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)-2\left(x^2+y^2+z^2\right)}\)
\(\ge\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)-\frac{2}{3}\left(x+y+z\right)^2}\)
\(=\frac{3}{\frac{9}{x+y+z}-2}\ge\frac{3}{7}\)
Cbht