Chứng tỏ :
\(M=x^2+x+1\) vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có (x-2)<(x-1)
mà \(\left(x-1\right)^2\) \(\ge\) \(0\)
\(\left|x-2\right|\ge0\)
do x-2<x-1
nên hoặc \(\left(x-1\right)^2>0\) và \(\left|x-2\right|>0\)
hoặc \(\left(x-1\right)^2=0\) và |x-2| >0
hoặc \(\left(x-1\right)^2>0\) và | x-2|=0
nên (x-1)^2 +/x-2/ \(\ne\) 0
vậy đa thức trên vô nghiệm
mk cũng ko bít đúng hay sai lun à. ko đúng đừng có chửi nha, mk làm theo suy nghĩ của mk thui
Ta có: 2x + 5 = 4(x – 1) – 2(x – 3) ⇔ 2x + 5 = 2x + 2 ⇔ 0x = -3 (vô lí)
Vậy phương trình đã cho vô nghiệm.
f(x) = 2x2 - 2x + 1 = x2 + (x2 - 2x + 1) = x2 + (x - 1 )2 > 0 vỡi mọi x. Nghĩa là f(x) vô nghiệm
Ta có:
\(f\left(x\right)=2x^2-2x+1\)
\(=x^2+\left(x^2-2x+1\right)\)
\(=x^2+\left(x-1\right)^2\ge0\)
Mà trong TH này không xả ra dấu bằng nên đa thức vô nghiệm.
Vì \(\left(x-5\right)^2\) \(\ge0\) nên \(\left(x-5\right)^2+1\ge1\)
Vậy đa thức trên vô nghiệm.
Mình chỉ trả lời: vì tại x=a bất kì đều có giá trị khác 0 nên (x-5)^2+1 vô nghiệm
eo biet suc vat tu dang tu tra loi