1/1 x 2 + 1/2 x 3 + 1/3 x 4 +.....+ 1/99 x 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 1/1x2 + 1/2x3 + 1/3x4 ...... +1/9x10
= 1-1/2+1/2-1/3+1/3-1/4+........+1/9-1/10
=1-1/10=9/10
đặt A=1/1 x 1/2 + 1/2 x 1/3 + 1/3 + 1/4 + .......... + 1/9 x 1/10
\(A=\frac{1}{1}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{3}+...+\frac{1}{9}\cdot\frac{1}{10}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
đặt B=2/1 x 2 + 2/2 x 3 + 2/3 x4 + .............. + 2/98 x 99 + 2/99 x 100
\(B=2\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2\left(1-\frac{1}{100}\right)\)
\(=2\times\frac{99}{100}\)
\(=\frac{99}{50}\)
G = 1.2 + 1 + 2.3 + 1 + 3.4 + 1 + ... + 99.100 + 1
= 1.2 + 2.3 + 3.4 + ... + 99.100 + 99
⇒ 3G = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3 + 99.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
= 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - ... - 98.99.100 + 99.100.101 + 297
= 99.100.101 + 297
= 1000197
⇒ G = 1000197 : 3
= 333399
vì tử của tất cả các số là 1-1 mà 1-1=0
suy ra:=0+0+0+...+0 (100 số 0)
Suy ra:=0
vậy (1-1/1+2).(1-1/1+2+3).....(1-1/1+2+3+...+99+100)=0
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
=> 101x +5050 = 5555
=> 101x = 505
=> x = 505 : 101 = 5
Vậy, x = 5
b)1+2+3+4+...+x=820
=> ( x+1) x :2 = 820
=> (x+1)x = 1640
Mà 1640 = 40 . 41
=> x = 40 ( vì {x+1} - x = 1)
Vậy, x = 40
c) 3x+1 = 9.27=243
=> 3x+1 = 35
=>x + 1 = 5
=> x = 4
Vậy, x=4
d) x+2x+3x+...+99x+100x=15150
=> [( 100 + 1) x 100 :2 ] x = 15150
=> 5050x = 15150
=> x = 15150:5050 = 3
Vậy, x =3
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
=> 100x + 5050 = 205550
=> 100x = 205550 - 5050= 200500
=> x = 200500 : 100 = 2005
Vậy, x = 2005
f)3x+3x+1+3x+2=351
=> 3x + 3x . 3 + 3x x 9 = 351
=> 3x ( 1+3+9) = 351
=> 3x . 13 = 351
=> 3x = 351 :13=27 mà 27 = 33
=> x=3
Vậy, x=3
Ta có :
\(P=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)
\(P=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}....\frac{9898}{99.100}\)
\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{98.101}{99.100}\)
\(P=\frac{1.2.3...98}{2.3.4....99}.\frac{4.5.6....101}{3.4.5...100}\)
\(P=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)
Ủng hộ mk nha !!! ^_^
\(P=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)
\(P=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{9898}{99.100}\)
\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{98.101}{99.100}\)
\(P=\frac{1.2.3...98}{2.3.4...99}.\frac{4.5.6...101}{3.4.5...100}\)
\(P=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)
M = \(\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+...+\dfrac{1}{99x100}\)
M = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
M = \(1-\dfrac{1}{100}\)
M = \(\dfrac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
học tốt nha
=99/100