ai giúp mk vs!!!
Giải bài toán bằng cách lập phương trình:
1 thửa ruộng hình chữ nhật có S=100m2.Tính độ dài các cạnh của thửa ruộng.Bt rằng nếu tăng chiều rộng lên 2 m và giảm chiều dài đi 5m thì S tăng thêm 5m2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi chiều dài thửa ruộng là x(m) chiều rộng là y(m) ( x,y>o)
diện tích thửa ruộng là x.y (m2)
nếu tăng chiều dài thêm 2 và tăng chiều rộng thêm 3 thì diện tích thửa ruộng lúc này là (x+2)(y+3)=100+xy
nếu cùng giảm cả chiều dài và chiều rộng là 2m thì diện tích lúc này là (x-2)(y-2)=68-xy
từ đó ta tìm được diện tích là 308m2
Gọi a và b lần lượt là chiều rộng và chiều dài của mảnh ruộng hình chữ nhật(m) (với điều kiện a>0, b>0)
Theo bài ra ta có: ab=100=> a=100/b (1)
(a+2)(b-5)=100+5 =105(2)
Thay pt 1) vào pt (2) ta được:
100 -500/b +2b -10=105
<=>100b/b -500/b +2b^2/b -10b/b =105b/b
=>100b -500 +2b^2 -10b-105b=0
<=>2b^2-15b-500=0
<=>2(b^2 -15/2 .b -250)=0
<=>b^2- 15/2.b -250=0
<=>b^2 +25/2 .b -20b -250=0
<=>(b^2 -20b) +(25/2. b -250)=0
<=>b(b-20) + 25/2 .(b-20)=0
<=>(b-20)(b+25/2)=0
<=> b-20 =0 hoặc b+25/2 =0
<=>b=20(thỏa mãn điều kiện) hoặc b=-25/2(loại)
Vậy chiều dài của mảnh ruộng hình chữ nhật là 20 m=> chiều rộng của mảnh vườn là 100/20 =5m
Gọi chiều rộng là x
=>Chiều dài là x+60
Theo đề, ta có: (x+2)(x+55)=x(x+60)+5
=>x^2+57x+110-x^2-60x=5
=>-3x=-105
=>x=35
=>Chiều dài là 95m
nếu giảm chiều dài đi 20 m và tăng chiều rộng lên 20 m thì thửa ruộng trở thành hình vuông nên lúc đầu chiều dài hơn chiều rộng 20+20 = 40 m
nửa chu vi thửa ruộng là : 120 : 2 = 60 m
chiều dài thửa ruộng là : (60 + 40) : 2 = 50 m
chiều rộng thửa ruộng là : 50 - 40 = 10 m
diện tích thửa ruộng là : 10 *50 = 500 m2
Gọi chiều dài thửa ruộng hình chữ nhật là x (m).
Do diện tích thửa ruộng là 100m2 nên chiều rộng của thửa ruộng hình chữ nhật là \(\frac{100}{x}\)( m )
Chiều dài lúc sau của thửa ruộng là x - 5 ( m )
Chiều rộng lúc sau của thửa ruộng là \(\frac{100}{x}+2\)( m )
Diện tích lúc sau của thửa ruộng là \(\left(x-5\right)\times\left(\frac{100}{x}+2\right)\)( m2 )
Vì diện tích của thửa ruộng tăng thêm 5 m2 nên diện tích lúc sau của thửa ruộng là
100 + 5 = 105 ( m2 )
do đó ta có phương trình \(\left(x-5\right)\times\left(\frac{100}{x}+2\right)=105\)( m2 )
\(\Leftrightarrow\left(x-5\right)\times\left(100+2x\right)=105x\)
\(\Leftrightarrow100x+2x^2-500-10x=105x\)
\(\Leftrightarrow2x^2-15x-500=0\)
\(\Leftrightarrow2x^2-40x+25x-500=0\)
\(\Leftrightarrow2x\times\left(x-20\right)+25\times\left(x-20\right)=0\)
\(\Leftrightarrow\left(x-20\right)\times\left(2x+25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-20=0\\2x+25=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=\frac{-25}{2}\left(ktm\right)\end{cases}}\)
Vậy chiều dài ban đầu của thửa ruộng là 20m, chiều rộng ban đầu của thửa ruộng là 5m.