K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

a)   Xét   \(\Delta BDA\)và    \(\Delta BFC\) có:

\(\widehat{BDA}=\widehat{BFC}=90^0\)

\(\widehat{ABC}\) chung

suy ra:   \(\Delta BDA~\Delta BFC\)

\(\Rightarrow\)\(\frac{BD}{BF}=\frac{BA}{BC}\)

\(\Rightarrow\)\(BD.BC=BA.BF\)

Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

\(\widehat{FHB}=\widehat{EHC}\)

Do đó: ΔFHB\(\sim\)ΔEHC

Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

\(\widehat{DBH}\) chung

Do đó: ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC

hay \(BD\cdot BC=BE\cdot BH\)

Xét ΔCDH vuông tại D và ΔCFB vuông tại F có

\(\widehat{DCH}\) chung

Do đó: ΔCDH~ΔCFB

=>\(\dfrac{CD}{CF}=\dfrac{CH}{CB}\)

=>\(CD\cdot CB=CH\cdot CF\)

\(BH\cdot BE+CH\cdot CF\)

\(=BD\cdot BC+CD\cdot BC=BC\left(BD+CD\right)=BC^2\)

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F cóc

góc EAB chung

Do đó:ΔAEB\(\sim\)ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AF\cdot AB\)

b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc HBD chung

Do đó:ΔBDH\(\sim\)ΔBEC

Suy ra: BD/BE=BH/BC

hay \(BD\cdot BC=BH\cdot BE\)

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: AB/AC=AE/AF

hay \(AB\cdot AF=AC\cdot AE\)

b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc DBH chung

Do đó: ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC

hay \(BD\cdot BC=BH\cdot BE\)

1: Xét ΔBFC vuông tại F và ΔBDA vuông tại D có

\(\widehat{DBA}\) chung

Do đó: ΔBFC\(\sim\)ΔBDA

Suy ra: BF/BD=BC/BA

hay \(BF\cdot BA=BD\cdot BC\)

2: Ta có: BF/BD=BC/BA

nên BF/BC=BD/BA

Xét ΔBDF và ΔBAC có 

BF/BC=BD/BA

\(\widehat{DBF}\) chung

Do đó: ΔBDF\(\sim\)ΔBAC
SUy ra: \(\widehat{BDF}=\widehat{BAC}\)

3: Xét tứ giác ABDE có 

\(\widehat{ADB}=\widehat{AEB}=90^0\)

Do đó: ABDE là tứ giác nội tiếp

Suy ra: \(\widehat{BAC}+\widehat{BDE}=180^0\)

mà \(\widehat{CDE}+\widehat{BDE}=180^0\)

nên \(\widehat{CDE}=\widehat{BAC}\)

20 tháng 4 2020

A B C D F E H

mik làm câu b còn câu a chắc bạn làm được rồi

b,Xét \(\Delta BCF\)và \(\Delta HCD\)

\(\widehat{D}=\widehat{F}=90^0;C\)chung

\(\Rightarrow\Delta BCF~\Delta HCD\left(g.g\right)\)

\(\Rightarrow\frac{BC}{HC}=\frac{CF}{HD}\)

\(\Rightarrow BC.HD=HC.CF\left(1\right)\)

Xét \(\Delta BHD\)và \(\Delta BCE\) có

\(\widehat{D}=\widehat{E};\widehat{B}\)chung

\(\Rightarrow\Delta HBD~\Delta BCE\left(g.g\right)\)

\(\Rightarrow\frac{BH}{BC}=\frac{BD}{BE}=BH.BE=BC.BD\left(2\right)\)

từ 1 và 2 ta có :

\(BC.BD+BC.CD=BH.BE+CH.CF\)

\(\Rightarrow BH.BE+CH.CF=BC\left(BD+CD\right)\)

\(=BC.BC=BC^2\)

Chúc bạn học tốt !

7 tháng 5 2019

2/Xét ∆ABD và ∆ACE có:

chung

∆ABD ∽ ∆ACE (g.g)

b.

Xét ∆HDC và ∆HEB có:

(vì BD AC, CE AB)

(đ đ)

∆HDC ∽ ∆HEB(g.g)

\(\frac{HD}{HE}=\frac{HC}{HB}< =>HD.HB=HE.HC\)

c.Vì H là giao điểm của 2 đường cao CE,BD

H là trực tâm của ∆ABC

AH BC tại F

Xét ∆CIF và ∆CFA có:

: chung

(vì AF BC, FI AC)

∆CIF ∽ ∆CFA (g.g)

Bạn tự vẽ hình nha