Cho tam giác ABC vuông tại A , đường cao AH.
a) Chứng minh : tam giác ABC đồng dạng với tam giác HAC.
b) Biết AB = 6 cm , AC = 8 cm.Tính độ dài các cạnh BC , AH, CH , BH.
c) Trên AH lấy điểm M sao cho AM= 1,2 cm , từ điểm M kẻ đường thẳng song song với BC lần lượt cagws AB và AC tại E và F. Tính Saef phần Sabc, Sabc , Saef.
a) Xét \(\Delta ABC\) và \(\Delta HAC\) có:
\(\widehat{BAC}=\widehat{AHC}=90^0\)
\(\widehat{ABC}=\widehat{HAC}\) do cùng phụ với góc BAH )
suy ra: \(\Delta ABC~\Delta HAC\)
b) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)
\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)
Áp dụng hệ thức lượng ta có:
\(AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\)cm
\(CH=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\)cm
\(BH=BC-HC=10-6,4=3,6\)cm