K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2017

\(https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7\)https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7
Ấn vào linh đấy ế

14 tháng 12 2016

Bài 2:

Ta chứng minh \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) (*) :

Bình phương 2 vế của (*) ta có:

\(\left(\left|a+b\right|\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)

\(\Leftrightarrow a^2+b^2+2ab\le a^2+b^2+2\left|ab\right|\)

\(\Leftrightarrow ab\le\left|ab\right|\) (luôn đúng)

Áp dụng (*) vào bài toán ta có:

\(\left|a-c\right|\le\left|a-b+b-c\right|=\left|a-c\right|\) (luôn đúng)

6 tháng 2 2017

cảm ơn nhiều nha leuleuhiha

20 tháng 9 2015

hoc24.net giúp em với

3 tháng 7 2017

 Ta có a² + \(\sqrt{a}\) + \(\sqrt{a}\) ≥ 3a ( 1 ) 

b² + \(\sqrt{b}\) + \(\sqrt{b}\) ≥ 3b ( 2 ) 

c² + \(\sqrt{c}\) + \(\sqrt{c}\) ≥ 3c ( 3 ) 

Cộng từng vế ( 1 ) ( 2 ) ( 3 ) cho ta 

a² + b² + c² + 2 ( \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) ) ≥ 3 ( a + b + c ) = 9 

2 ( \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)) ≥ 9 - ( a² + b² + c² ) 

2 ( \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) ) ≥ 9 - ( a + b + c )² + 2 (ab + bc + ca) = 2 (ab + bc + ca) 

Vậy\(\sqrt{a}+\sqrt{b}+\sqrt{c}\) ≥ ab + bc + ca 

Dấu bằng xãy ra khi và chỉ khi a = b = c = 1

Vậy......

3 tháng 7 2017

ko biết làm thì lượn nhé ngứa mắt

7 tháng 11 2015

Ta có: 1<a<b+c<a+1

=>b+c<a+1

Mà b<c

=>b+b<b+c<a+1

=>2.b<a+1

Mà 1<a

=>2.b<a+a<a+a

=>2.b<2.a

=>b<a

=>1:b>1:a

=>1/b>1/a

=>ĐPCM

7 tháng 11 2015

Ta có: 1<a ; a<b+c ; b+c<a+1 ; b<c

vì 1<a nên 1/a<a/a hay 1/a<1(1)

Vì a<b+c mà b+c<a+1 nên b+c<1 mà b<c nên b<1 nên 1/b>1(2)

Từ (1);(2) =>1/a<1<1/b

Vậy 1/b>1/a

không chắc nhé bạn hiền