Chứng minh
A)H=1/2<1/51+1/52+1/53+...+1/100<1
B)7/12<1/21+1/22+1/23+...+1/40<5/6
C)1<S<2 biết: S=6/15+6/16+6/17+...+6/19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,A=2x^2+2x+1=\left(x^2+2x+1\right)+x^2=\left(x+1\right)^2+x^2\\ Mà:\left(x+1\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x+1\right)^2+x^2>0\forall x\in R\\ Vậy:A>0\forall x\in R\)
2:
a: =-(x^2-3x+1)
=-(x^2-3x+9/4-5/4)
=-(x-3/2)^2+5/4 chưa chắc <0 đâu bạn
b: =-2(x^2+3/2x+3/2)
=-2(x^2+2*x*3/4+9/16+15/16)
=-2(x+3/4)^2-15/8<0 với mọi x
\(B=1+3+3^2+3^3+3^4+...+3^{2006}\)
\(\Rightarrow3B=3\left(1+3+3^2+...+3^{2006}\right)\)
\(\Rightarrow3B=3+3^2+3^3+...+3^{2007}\)
B=1+3+...+32006
=>3B=3+32+...+32007
A=(32007-1):2=32007:2-3:2
Để chứng minh rằng A={3^2007-1}:2, ta cần chứng minh hai phần:
1. Chia hết cho 2:
Ta có 3^2007-1 là số lẻ vì 3^2007 là số lẻ và 1 là số chẵn. Vì vậy, A chia hết cho 2.
2. Không chia hết cho 4:
Ta sẽ chứng minh rằng 3^2007-1 không chia hết cho 4.
Ta biết rằng 3^2 ≡ 1 (mod 4) (vì 3^2 = 9 ≡ 1 (mod 4))
Do đó, ta có thể viết lại 3^2007-1 = (3^2)^1003-1 = (3^2-1)(3^2)^1002+1 = 8k+1 với k là số nguyên.
Vì vậy, A không chia hết cho 4.
Từ hai phần trên, ta có thể kết luận rằng A={3^2007-1}:2.
Bất đẳng thức cần chứng minh tương đương với: \(\dfrac{2}{3}a^2-\dfrac{4}{3}ab+\dfrac{2}{3}b^2\ge0\Leftrightarrow\dfrac{2}{3}\left(a-b\right)^2\ge0\) (luôn đúng với mọi a, b).
a) Ta có A = 1 + 21 + 22 + ... + 22021
2A = 21 + 22 + 23 + ... + 22022
Vậy 2A = 21 + 22 + 23 + ... + 22022
b) 2A - A = ( 21 + 22 + 23 + ... + 22022 ) - ( 1 + 21 + 22 + ... + 22021 )
A = 22022 - 1
Vậy A = 22022 - 1
a)
\(A=1+2^1+2^2+2^3+...+2^{2020}+2^{2021}\)
\(2A=2^1+2^2+2^3+2^4+...+2^{2021}+2^{2022}\)
b)
\(2A=2^1+2^2+2^3+...+2^{2022}\)
\(2A-A=\left(2^1+2^2+2^3+...+2^{2022}\right)-\left(1+2^1+2^2+....+2^{2021}\right)\)
\(A=2^{2022}-1\)
=> đpcm
Lời giải:
Vì $a$ chia $6$ dư $5$ nên đặt $a=6k+5$ với $k$ nguyên.
Khi đó: $a^2=(6k+5)^2=36k^2+25+60k=6(6k^2+10k+4)+1$ chia $6$ dư $1$
\(\dfrac{9}{4}=ab+a+b+1\le\dfrac{1}{4}\left(a+b\right)^2+a+b+1\)
\(\Leftrightarrow\left(a+b\right)^2+4\left(a+b\right)-5\ge0\)
\(\Leftrightarrow\left(a+b-1\right)\left(a+b+5\right)\ge0\)
\(\Leftrightarrow a+b-1\ge0\) (do \(a+b+5>0\))
\(\Rightarrow a+b\ge1\)
b.
\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\ge\dfrac{1}{2}.1^2=\dfrac{1}{2}\) (đpcm)
b, \(VT=\dfrac{1-sin2x}{1+sin2x}\)
\(=\dfrac{sin^2x+cos^2x-2sinx.cosx}{sin^2x+cos^2x+2sinx.cosx}\)
\(=\dfrac{\left(sinx-cosx\right)^2}{\left(sinx+cosx\right)^2}\)
\(=\dfrac{\left(\dfrac{sinx-cosx}{cosx}\right)^2}{\left(\dfrac{sinx+cosx}{cosx}\right)^2}\)
\(=\dfrac{\left(\dfrac{sinx}{cosx}-1\right)^2}{\left(\dfrac{sinx}{cosx}+1\right)^2}\)
\(=\dfrac{\left(tanx-tan\dfrac{\pi}{4}\right)^2}{\left(1+tanx.tan\dfrac{\pi}{4}\right)^2}\)
\(=tan^2\left(x-\dfrac{\pi}{4}\right)=tan^2\left(\dfrac{\pi}{4}-x\right)=VP\)
a,1/51 > 1/100
1/52 > 1/100
1/53 > 1/100
...
1/100=1/100
=>H>1/100 + 1/100 + 1/100 +...+1/100
H>50/100=1/2
1/51<1/50
1/52<1/50
....
1/100<1/50
=>H<1/50+1/50+...+1/50
H<50/50=1
Vay1/2<H<1