Cho phương trình 2x^2-mx-20=0 ( tham số m )
Chứng minh rằng phương trình trái dấu với mọi m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Δ}=\left(-m\right)^2-4\left(-2m^2+3m-2\right)\)
\(=m^2+8m^2-12m+8\)
\(=9m^2-12m+8\)
\(=9m^2-12m+4+4=\left(3m-2\right)^2+4>0\)
Do đó: PHương trình luôn có hai nghiệm phân biệt
a) tự làm nha
b xét tích ac ta có: \(-m^2+m-1=-\left(m^2-m+\frac{1}{4}+\frac{3}{4}\right)=-\left[\left(m-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
ta có: \(\left(m-\frac{1}{2}\right)^2\ge0\Leftrightarrow\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\Rightarrow-\left[\left(m-\frac{1}{2}\right)^2+\frac{3}{4}\right]
a/
ta có : Δ = [-(m - 2) ]2 - 4 . 1 . (m - 5)
= m2 - 2m + 4 - 4m + 20
= m2 - 6m + 24
để pt có nghiệm thì : Δ ≥ 0
⇔ m2 - 6m + 24 ≥ 0
⇔ m2 - 2 . 3 . m + 32 + 15 ≥ 0
⇔ ( m - 3 )2 +15 ≥ 0
ta thấy : ( m - 3 )2 ≥ 0 ==> ( m - 3 )2 + 15 ≥ 15 > 0
Vậy pt trên luôn có nghiệm với mọi m
b/
:v
để pt luôn có 2 no trái dấu => a.c <0
=> -m2 -2 < 0
=> -m2 < 2 [do m2 >0 hoặc m2 = 0]
=> m2 > -2 với mọi giá trị của m
KL : với m2 > -2 thì pt luôn có 2 no x1 , x2 trái dấu
`a)ac=-3<0`
`=>b^2-4ac>0`
`=>` phương trình luôn có hai nghiệm phân biệt với mọi m
`b)` áp dụng vi-ét:`x_1+x_2=m,x_1.x_2=-3`
`(x_1+6).(x_2+6) = 2019`
`<=>x_1.x_2+6(x_1+x_2)+36=2019`
`<=>6m-3+36=2019`
`<=>6m+33=2019`
`<=>6m=1986`
`<=>m=331`
Vậy `m=331` thì `(x_1+6).(x_2+6) = 2019`
`a)ac=-3<0`
`=>b^2-4ac>0`
`=>` phương trình luôn có hai nghiệm phân biệt với mọi m
`b)` áp dụng vi-ét:`x_1+x_2=m,x_1.x_2=-3`
`(x_1+6).(x_2+6) = 2019`
`<=>x_1.x_2+6(x_1+x_2)+36=2019`
`<=>6m-3+36=2019`
`<=>6m+33=2019`
`<=>6m=1986`
`<=>m=331`
Vậy `m=331` thì `(x_1+6).(x_2+6) = 2019`
a,ta có \(\Delta\)=\(\left(-m\right)^2-4.\left(-3\right)=m^2+12\)
vì \(m^2\ge\)0(\(\forall\)m)=>\(m^2+12\ge12=>m^2+12>0=>\Delta>0\)
vậy pt luôn có 2 nghiệm phân biệt với mọi m
b, theo vi ét=>\(\left\{{}\begin{matrix}x1+x2=m\\x1.x2=-3\end{matrix}\right.\)
có \(\left(x1+6\right).\left(x2+6\right)=2019< =>x1.x2+6x1+6x2+36-2019=0< =>-3+6\left(x1.x2\right)-1983=0< =>6m=1986< =>m=\dfrac{1986}{6}=331\)
1. Với m=5 thì (1) có dạng
\(5x^2-5x-10=0\Leftrightarrow x^2-x-2=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
2. Nếu m=0 thì (1) trở thành
\(-5x-5=0\Leftrightarrow x=-1\)
Nếu m khác 0 , coi (1) là phương trình bậc 2 ẩn x, ta có:
\(\text{Δ}=\left(-5\right)^2-4\cdot m\cdot\left(-m-5\right)=4m^2+20m+25=\left(2m+5\right) ^2\ge0\)
Nên phương trình (1) luôn có nghiệm với mọi m
a. Bạn tự giải
b.
Với \(m=0\) pt có nghiệm \(x=-1\) (thỏa mãn)
Với \(m\ne0\)
\(\Delta=25+4m\left(m+5\right)=4m^2+20m+25=\left(2m+5\right)^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Pt đã cho luôn có nghiệm với mọi m
\(2x^2-mx-20=0\)
pt này có 2 nghiệm \(\Leftrightarrow a.c< 0\)
\(\Leftrightarrow2.\left(-20\right)< 0\forall m\)
vậy phương trình đã cho luôn trái dấu \(\forall m\)
sai đề bạn ơi pt có 2 nghiệm trái dấu với mọi m