K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

a) Ta có :

\(A=5x^2-10x+3\)

\(A=5\times\left(x^2-2x+1\right)-2\)

\(A=5\times\left(x-1\right)^2-2\)

Mà \(5\times\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge-2\)

Dấu "=" xảy ra khi:

\(x-1=0\Leftrightarrow x=1\)

Vậy \(MinA=-2\Leftrightarrow x-1\)

27 tháng 3 2018

b) 

\(B=2x^2+8x+y^2-10y+43\)

\(B=2\times\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10\)

\(B=2\times\left(x+2\right)^2+\left(y-5\right)^2+10\)

Mà \(\left(x+2\right)^2\ge0\forall x\Leftrightarrow2\times\left(x+2\right)^2\ge0\forall x\)

       \(\left(y-5\right)^2\ge0\forall y\)

\(\Rightarrow B\ge10\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x+2=0\\y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}\)

Vậy \(MinB=10\Leftrightarrow\left(x;y\right)=\left(-2;5\right)\)

18 tháng 7 2021

có vài chỗ ko thấy

 

13 tháng 11 2021

\(1,=6xy\left(x^2-2xy+y^2\right)=6xy\left(x-y\right)^2\\ 2,=\left(x^2+4-4\right)\left(x^2+4+4\right)=x^2\left(x^2+8\right)\\ 3,=5x\left(x-y\right)-10\left(x-y\right)=5\left(x-2\right)\left(x-y\right)\\ 4,=\left(a-b\right)\left(a^2+ab+b^2\right)-3\left(a-b\right)=\left(a-b\right)\left(a^2+ab+b^2-3\right)\\ 5,=\left(x-1\right)^2-y^2=\left(x+y-1\right)\left(x-y-1\right)\\ 6,Sửa:x^2-x-2=x^2+x-2x-2=\left(x+1\right)\left(x-2\right)\\ 7,=x^4-4x^2-x^2+4=\left(x^2-4\right)\left(x^2-1\right)\\ =\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\\ 8,=-x^3-x^2-x=-x\left(x^2+x+1\right)\\ 9,=\left(a-3\right)\left(a^2+3a+9\right)+\left(a-3\right)\left(6a+9\right)\\ =\left(a-3\right)\left(a^2+9a+18\right)\\ =\left(a-3\right)\left(a^2+3a+6a+18\right)\\ =\left(a-3\right)\left(a+3\right)\left(a+6\right)\)

\(10,=x^2y-x^2z+y^2z-xy^2+z^2\left(x-y\right)\\ =xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\\ =\left(x-y\right)\left(xy-xz-yz+z^2\right)\\ =\left(x-y\right)\left(x-z\right)\left(y-z\right)\)

23 tháng 10 2021

a: ta có: \(P=x^2+10x+27\)

\(=x^2+10x+25+2\)

\(=\left(x+5\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=-5

17 tháng 12 2023

Bài 1:

a: \(M=x^2-10x+3\)

\(=x^2-10x+25-22\)

\(=\left(x^2-10x+25\right)-22\)

\(=\left(x-5\right)^2-22>=-22\forall x\)

Dấu '=' xảy ra khi x-5=0

=>x=5

b: \(N=x^2-x+2\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi x-1/2=0

=>x=1/2

c: \(P=3x^2-12x\)

\(=3\left(x^2-4x\right)\)

\(=3\left(x^2-4x+4-4\right)\)

\(=3\left(x-2\right)^2-12>=-12\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

`# \text {04th5}`

`a.`

`P = (5x^2 - 2xy + y^2) - (x^2 + y^2) - (4x^2 - 5xy + 1)`

`= 5x^2 - 2xy + y^2 - x^2 - y^2 - 4x^2 + 5xy - 1`

`= (5x^2 - x^2 - 4x^2) + (-2xy + 5xy) + (y^2 - y^2) - 1`

`= 3xy - 1`

`b.`

\((x^2-5x+4)(2x+3)-(2x^2-x-10)(x-3)\)

`= x^2(2x + 3) - 5x(2x + 3) + 4(2x + 3) - [ 2x^2(x - 3) - x(x - 3) - 10(x - 3)]`

`= 2x^3 + 3x^2 - 10x^2 - 15x + 8x + 12 - (2x^3 - 6x^2 - x^2 + 3x - 19x + 30)`

`= 2x^3 -7x^2 - 7x + 12 - (2x^3 - 7x^2 - 7x + 30)`

`= 2x^3 - 7x^2 - 7x + 12 - 2x^3 + 7x^2 + 7x -30`

`= -30`

Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.

31 tháng 10 2021

a) \(=\left(x-y\right)\left(3+5x\right)\)

b) \(=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-y-3\right)\left(x+y-3\right)\)

c) \(=5\left(x^2-xy-2x+2y\right)=5\left[x\left(x-y\right)-2\left(x-y\right)\right]=5\left(x-y\right)\left(x-2\right)\)

17 tháng 8 2019

A= 2x^2 + y^2 - 2xy -2x+3

A= x^2-2xy + y^2 + x^2 - 2x+ 1 +2

A= (x-y)^2 + (x-1)^2 + 2

(x-y)^2> hoặc = 0 với mọi giá trị của x

(x-1)^2 > hoặc =0 với mọi giá trị của x

=> (x-y)^2 + (x-1)^2 > hoặc =0 với mọi giá trị của x

=> (x-y)^2 + (x-1)^2 + 2 > hoặc =2

=> A lớn hơn hoặc bằng 2

=> GTNN của A=2 tại x=y=1

8 tháng 3 2021

\(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra <=> x = 3

Vậy MinA = 1

\(B=5x^2-10x+3=5\left(x^2-2x+1\right)-2=5\left(x-1\right)^2-2\ge-2\forall x\)

Dấu "=" xảy ra <=> x = 1

Vậy MinB = -2

\(C=2x^2+8x+y^2-10y+43=2\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10=2\left(x+2\right)^2+\left(y-5\right)^2+10\ge10\forall x,y\)

Dấu "=" xảy ra <=> x = -2 ; y = 5

Vậy MinC = 10

8 tháng 3 2021

\(A=x^2-6x+10\)

\(=\left(x^2-6x+9\right)+1\)

\(=\left(x-3\right)^2+1\ge1\forall x\)

Dấu"=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)

Vậy \(Min_A=1\Leftrightarrow x=3\)

b,\(B=5x^2-10x+3\)

\(=5\left(x^2-2x+1\right)-2\)

\(=5\left(x-1\right)^2-2\ge-2\forall x\)

Dấu"=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)

Vậy \(Min_B=-2\Leftrightarrow x=1\)

c,\(C=2x^3+8x+y^2-10+43\)

\(=2x^2+8x+8+y^2-10y+25+10\)

\(=2\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10\)

\(=2\left(x+2\right)^2+\left(y-5\right)^2+10\ge10\forall x,y\)

Dấu"=" xảy ra khi \(\orbr{\begin{cases}x+2=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\y=5\end{cases}}}\)

Vậy \(Min_C=10\Leftrightarrow x=-2;y=5\)