tìm n dể các biểu thức sau là số chính phương
A=n2+2n+1859
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để biểu thức \(\frac{3}{n-2}\) là phân số khi n - 2 ≠ 0 => n ≠ 2
Để biểu thức \(\frac{3}{n-2}\) là phân số khi n - 2 = 1 hoặc n - 2 = 3 => n = 3 hoặc 5
Để A đạt giá trị lớn nhất thì mẫu số bằng 1
Ta có: 2n - 5 = 1 => n = 3
Vậy n = 3 để A đạt giá trị lớn nhất
Lời giải:
Đặt $n^2-2n+2020=a^2$ với $a\in\mathbb{N}^*$
$\Leftrightarrow (n-1)^2+2019=a^2$
$\Leftrightarrow 2019=(a-n+1)(a+n-1)$
Với $a\in\mathbb{N}^*, n\in\mathbb{N}$ thì $a+n-1>0$
$\Rightarrow a-n+1>0$. Vậy $a+n-1> a-n+1>0$
Mà tích của chúng bằng $2019$ nên ta có các TH sau:
TH1: $a+n-1=2019; a-n+1=1$
$\Rightarrow n=1010$ (tm)
TH2: $a+n-1=673, a-n+1=3$
$\Rightarrow n=336$
tik cho minh di tik nhieu may man ca nam do !!!!!!!!!!!!!
giup minh nhe!!! | |
tik minh nhe!!! | |
ket ban voi minh nhe!!!!! |
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
A là số chính phương
đặt A = n^2 + 2n+ 1859 = a^2 ( a thuộc N ) ( vì a có mũ chẵn nên ta chỉ xét a thuộc N)
=> (n+1)^2 + 1858 = a^2
<=> a^2 - (n+1)^2 = 1858
<=> ( a+n+1)(a-n-1) = 1858
Vì n nguyên , a là số tự nhiên
=> a+n+1 và a-n-1 nguyên
=> a+n+1 và a-n-1 là ước của 1858
Mà a+n+1 + a-n-1 = 2a chẵn
=> a+n+1 và a-n-1 cùng chẵn
=> a+n+1 và a-n-1 là ước chẵn của 1858
Đến đây bạn tự làm tiếp nhoa
tk cho mk ~~