: Giả sử (x,y) là cặp số thỏa mãn 2 điều kiện
| xy - 4 | = 8 - y2
xy = 2 + x2
Tính giá trị của \(\frac{x^2-y^2}{x^2+y^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có (x+y)2\(\le\)2(x2+y2)=2
=> x+y \(\le\)\(\sqrt{2}\)(vì x+y\(\ge\)0)
Dấu bằng xảy ra khi x=y=\(\frac{\sqrt{2}}{2}\)
Bất đẳng thức Cô-si có \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\):
\(x^2+y^2\ge2xy\Rightarrow2\ge x^2+y^2+2xy\Rightarrow x+y\le\sqrt{2}\)
Vậy : \(GTLN=\sqrt{2}\)
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
Em làm cách này được không ạ?!
Với \(x\ne\pm y\), ta có: \(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4\left(x^4-y^4\right)+8y^8}{\left(x^4-y^4\right)\left(x^4+y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^2\left(x^4+y^4\right)}{\left(x^4-y^4\right)\left(x^4+y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4-y^4}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2\left(x^2-y^2\right)+4y^4}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2\left(x^2+y^2\right)}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2-y^2}=4\)
\(\Leftrightarrow\frac{y\left(x-y\right)+2y^2}{\left(x-y\right)\left(x+y\right)}=4\)
\(\Leftrightarrow\frac{y\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}=4\)
\(\Leftrightarrow\frac{y}{x-y}=4\)
\(\Leftrightarrow y=4x-4y\Leftrightarrow5y=4x\left(đpcm\right)\)