K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2021

giải:

Vẽ OH⊥EFOH⊥EF.

Xét tam giác HOA vuông tại H ta có:

OH<OAOH<OA.

Suy ra EF>BC.EF>BC.

Nhận xét. Trong các dây đi qua một điểm A ở trong đường tròn, dây vuông góc với OA là dây ngắn nhất.

16 tháng 8 2021

Kẻ OH \perp EF.

Trong tam giác OHA vuông tại H, ta có:

OA>OH

Suy ra BC<EF

8 tháng 8 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ OH ⊥ EF.

Trong tam giác vuông OHA vuông tại H có OA > OH (đường vuông góc ngắn hơn đường xiên).

Vì OA > OH nên BC < EF (định lí 3).

2 tháng 5 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ OH ⊥ EF.

Trong tam giác vuông OHA vuông tại H có OA > OH (đường vuông góc ngắn hơn đường xiên).

Vì OA > OH nên BC < EF (định lí 3).

25 tháng 4 2017

Vẽ OH⊥EFOH⊥EF.

Xét tam giác HOA vuông tại H ta có OH<OA

Suy ra EF>BC..

Nhận xét. Trong các dây đi qua một điểm A ở trong đường tròn, dây vuông góc với OA là dây ngắn nhất.



22 tháng 12 2017

O B C A K H I J

Gọi bán kính đường tròn là R.

Kẻ đường kính CO cắt đường tròn (O) tại J. Gọi I là chân đường vuông góc hạ từ O đến BC. Theo tính chất đường kính dây cung : I là trung điểm BC.

Do độ lớn BC không đổi nên OI cũng không đổi. Ta tính được \(OI=\sqrt{R^2-\frac{a^2}{4}}\)

Do JC là đường kính nên \(\widehat{JAC}=\widehat{JBC}=90^o\)

Suy ra JA // BH; JB // AH.

Vậy tứ giác JAHB là hình bình hành. Ta có AH = JB.

Xét tam giác JBC có O là trung điểm JC, I là trung điểm BC nên OI là đường trung bình.

Vậy thì JB = 2OI.

Từ đó suy ra AH = 2 OI = \(2\sqrt{R^2-\frac{a^2}{4}}\)  (const)

Vậy thì \(AH.AK=2\sqrt{R^2-\frac{a^2}{4}}.AK\)

AK lớn nhất khi A là điểm chính giữa cung BC.

Khi đó \(AK\equiv AI=3OI=3\sqrt{R^2-\frac{a^2}{4}}\)

Vậy thì maxAH.AK \(=2\sqrt{R^2-\frac{a^2}{4}}.3\sqrt{R^2-\frac{a^2}{4}}=6\left(R^2-\frac{a^2}{4}\right)\)  

a: góc AEB=1/2*180=90 độ

góc FIB+góc FEB=180 độ

=>FIBE nội tiếp

b: góc ACB=1/2*180=90 độ

=>AC vuông góc DB

Xét ΔCAF và ΔCEA có

góc CAF=góc CEA

góc ACF chung

=>ΔCAF đồng dạng với ΔCEA

=>CA^2=AF*AE
Xét ΔDAB vuông tại D có AC vuông góc DB

nên CA^2=CD*CB=AF*AE