K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

Ta có: \(ab+bc+ca+\frac{3\left(ab+bc+ca\right)}{a+b+c}\ge2\sqrt{\frac{3\left(ab+bc+ca\right)^2}{a+b+c}}\)

Lại có: \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\)

\(\Rightarrow ab+bc+ca+\frac{3\left(ab+bc+ca\right)}{a+b+c}\ge2\sqrt{\frac{3.3abc\left(a+b+c\right)}{a+b+c}}=6\)

\(\Rightarrow1+\frac{3}{a+b+c}\ge\frac{6}{ab+bc+ca}\)(đpcm)

Dấu "=" xảy ra khi a=b=c=1

6 tháng 6 2020

Đặt \(a+b+c=p;ab+bc+ca=q;abc=r\). Khi đó r = 1 và ta cần chứng minh \(1+\frac{3}{p}\ge\frac{6}{q}\)

Ta có: \(q^2\ge3pr=3p\Rightarrow p\le\frac{q^2}{3}\)

\(\Rightarrow1+\frac{3}{p}\ge1+\frac{9}{q^2}\)

Đến đây, ta cần chứng minh \(1+\frac{9}{q^2}\ge\frac{6}{q}\Leftrightarrow\left(q-3\right)^2\ge0\)(Đúng)

Đẳng thức xảy ra khi a = b = c = 1

4 tháng 10 2020

ĐK : \(x\in N\left|x\inℕ^∗\right|min=1\)

\(\frac{a^2b}{ab^2+1}+\frac{b^2c}{bc^2+1}+\frac{c^2a}{ca^2+1}\ge\frac{3abc}{1+abc}\)

\(\frac{1^2.1}{1.1^2+1}+\frac{1^2.1}{1.1^2+1}+\frac{1^2.1}{1.1^2+1}\ge\frac{3.1.1.1}{1+1.1.1}\)

\(\frac{2}{2}+\frac{2}{2}+\frac{2}{2}\ge\frac{3}{2}\)

\(3\ne\frac{3}{2}\)(đpcm)

27 tháng 8 2017

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

AH
Akai Haruma
Giáo viên
25 tháng 6 2020

Lời giải:

Ta thấy:

\(\text{VT}=(a+\frac{ca}{a+b})+(b+\frac{ab}{b+c})+(c+\frac{bc}{c+a})\)

\(=\frac{a(a+b+c)}{a+b}+\frac{b(a+b+c)}{b+c}+\frac{c(a+b+c)}{c+a}\)

\(=(a+b+c)\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)

\(\geq (a+b+c).\frac{(a+b+c)^2}{a^2+ab+b^2+bc+c^2+ac}=\frac{(a+b+c)^3}{a^2+b^2+c^2+ab+bc+ac}\) (theo BĐT Cauchy-Schwarz)

Có:

$(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ac)=a^2+b^2+c^2+2$

$\Rightarrow a+b+c=\sqrt{a^2+b^2+c^2+2}=\sqrt{t+2}$ với $t=a^2+b^2+c^2$

Do đó:

$\text{VT}\geq \frac{\sqrt{(t+2)^3}}{t+1}$ \(=\sqrt{\frac{(t+2)^3}{(t+1)^2}}\)

Áp dụng BĐT AM-GM:

\((t+2)^3=\left(\frac{t+1}{2}+\frac{t+1}{2}+1\right)^3\geq 27.\frac{(t+1)^2}{4}\)

\(\Rightarrow \text{VT}=\sqrt{\frac{(t+2)^3}{(t+1)^2}}\geq \sqrt{\frac{27}{4}}=\frac{3\sqrt{3}}{2}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{\sqrt{3}}$

Mày chỉ tao SOS đi :((

16 tháng 5 2020

Bỏ chỗ kết hợp với bất đẳng thức Nesbit đi nhé, mình viết nhầm

6 tháng 4 2018

Cho mk k nhé!

4/1x3x5 = 1/1x3 - 1/3x5
4/3x5x7 = 1/3x5 - 1/5x7
.............
A = 1/1x3 - 1/11x13

1/1x3x5 = 1/4 x (1/1x3 - 1/3x5)
1/3x5x7 = 1/4 x (1/3x5 - 1/5x7)
..........
B = 1/4 x (1/1x3 - 1/11x13)