Cho tạm giác ABC . Điểm M nằm trong tam giác ABC. Chứng minh:
a,MB+MC<AB+AC
B,MA+MC<BA+BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kéo dài \(BM\) cắt \(AC\) tại \(K\)
Ta có: \(BK< AB+AK\) (bất đẳng thức t/g)
hay \(BM+MK< AB+AK\) \(\left(1\right)\)
Ta lại có: \(MC< MK+KC\) \(\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow BM+MK+MC< AB+AK+MK+KC\)
Hay \(BM+MC< AB+AK+KC\)
Hay \(BM+MC< AB+AC\)
https://lazi.vn/edu/exercise/757051/cho-tam-giac-abc-va-diem-m-nam-trong-tam-giac-chung-minh-rang-mb-mc-ab-ac
`->` Cop giỏi nhỉ?
a: Xét ΔBAM và ΔCAM có
AB=AC
góc BAM=góc CAM
AM chung
=>ΔBAM=ΔCAM
=>MB=MC
b: ΔABC cân tại A có AD là phân giác
nên AD vuông góc BC
Xét ΔBAM có
DA<DM
DA,DM lần lượt là hình chiếu của BA,BM trên AM
=>BA<BM
Trong ΔAMB, ta có:
MA + MB > AB (bất đẳng thức tam giác) (1)
Trong ΔAMC, ta có:
MA + MC > AC (bất đẳng thức tam giác) (2)
Trong ΔBMC, ta có:
MB + MC > BC (bất đẳng thức tam giác) (3)
Cộng từng vế (1), (2) và (3), ta có:
MA + MB + MA + MC + MB + MC > AB + AC + BC
⇔ 2(MA + MB + MC) > AB + AC + BC
Vậy MA + MB + MC > (AB + AC + BC) / 2
A M B C Hình 45 (h.45) Xét \(\Delta ABM:\)MA+MB>AB (1)
Xét \(\Delta AMC:\) MA+MC>AC (2)
Xét \(\Delta BMC:\) MB+MC>BC (3)
Cộng từng vế (1), (2), (3):
2(MA+MB+MC)>\(\text{AB+AC+BC}\)
Suy ra :
MA+MB+MC>\(\dfrac{\text{AB+AC+BC}}{2}\)
c,Vẽ tam giác đều AMD ( D thuộc nửa mặt phẳng bờ AM không chứa C)(Bạn tự vẽ hình nha, dễ như ăn kẹo ấy)
=> DM = AD = AM
Sau đó bạn chứng minh tam giác ADB = tam giác AMC (c.g.c) (cũng dễ thôi)
=> BD = MC (cặp cạnh tương ứng)
Ta có: DM = AM, BD = MC
=> DM : BM : BD = 3:4:5
=> tam giác BDM vuông tại M
=> góc AMB = 90o + 60o = 150o