a, CMR : IH = HK
b, CMR IC = HB
c, Tam giác AHC = Tam giác AHB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GT | △ABC cân tại A. AB = AC = 13cm. BC = 24cm. AH ⊥ BC (H BC). BK = CI. BM ⊥ AK. CN ⊥ AI |
KL | a, △AHC = △AHB b, AH = ? c, △ABK = △ACI d, △MBK = △NCI |
Bài giải:
a, Vì △ABC cân tại A (gt) => AB = AC và ABC = ACB
Xét △AHC vuông tại H và △AHB vuông tại H
Có: AH là cạnh hcung
AC = AB (cmt)
=> △AHC = △AHB (ch-cgv)
b, Ta có: BC = BH + HC
Mà BC = 24 cm
=> BH + HC = 24 cm
Mà HC = HB (△AHC = △AHB)
=> HC = HB = 24 : 2 = 12 (cm)
Xét △ABH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)
=> AH2 + 122 = 132 => AH2 = 25 => AH = 5
c, Ta có: ABK + ABC = 180o (2 góc kề bù)
ACI + ACB = 180o (2 góc kề bù)
Mà ABC = ACB (cmt)
=> ABK = ACI
Xét △ABK và △ACI
Có: AB = AC (cmt)
ABK = ACI (cmt)
BK = CI (gt)
=> △ABK = △ACI (c.g.c)
d, Xét △MBK vuông tại M và △NCI vuông tại N
Có: BK = CI (gt)
MKB = NIC (△ABK = △ACI)
=> △MBK = △NCI (ch-gn)
Gọi giao điểm phân giác ^B và ^C là O => AO là phân giác ^BAC => ^BAO=^CAO=1/2^BAC
Phân giác ^B cắt phân giác ^HAC tại N; Phân giác ^C cắt phân giác ^BAH tại M.
Ta có: ^ABC=^HAC (Cùng phụ ^BAH) => 1/2 ^ABC= 1/2 ^HAC => ^ABN=^NAC
Mà ^NAC+^BAN=900 => ^ABN+^BAN=900 => \(\Delta\)ANB vuông tại N => BN \(\perp\)AK hay IN\(\perp\)AK
Tương tự: KM \(\perp\)AI
Lại có: IN giao KM tại O => O là trực tâm của \(\Delta\)AIK => AO\(\perp\)IK
=> ^IKM = ^IAO (Cùng phụ ^AIK). MÀ ^IAO = ^BAO - ^BAI = 1/2 (^BAC - ^BAH)
Do ^BAH=^ACB => ^IAO = 1/2 (^BAC-^ACB) = >^IKM = 1/2. (^BAC - ^ACB) (1)
Xét \(\Delta\)ABC: ^BAC=900 => ^ABC = 900 - ^ACB = ^BAC - ^ACB
=> 1/2 ^ABC = 1/2. (^BAC - ^ACB) (2)
Từ (1) và (2) => ^IKM = 1/2 ^ABC hay ^IKM = ^IBC. Mà ^IKM + ^IKC = 1800
=> ^IBC + ^IKC = 1800 => Tứ giác BIKC nội tiếp đường tròn (đpcm).
Bạn tự vẽ hình nhá.
a, Vì tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)
Xét tam giác AHB vuông tại H và tam giác AHC vuông tại H , có:
AB = AC (gt)
AH là cạnh chung
=> Tam giác AHB = Tam giác AHC ( cạnh huyền - cạnh góc vuông )
b, Vì Tam giác AHB = Tam giác AHC nên HB = HC ( hai cạnh tương ứng )
và \(\widehat{BAH}=\widehat{CAH}\) ( hai góc tương ứng )
c, Vì Tam giác AHB = Tam giác AHC nên \(\widehat{ABH}=\widehat{ACH}\) hay \(\widehat{KBH}=\widehat{ICH}\)
Xét tam giác HKB vuông tại K và tam giác HIC vuông tại I, có:
HB = HC ( cmt )
\(\widehat{KBH}=\widehat{ICH}\)
=> Tam giác HKB = Tam giác HIC ( cạnh huyền - góc nhọn )
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH là cạnh chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
b) Ta có: ΔAHB=ΔAHC(cmt)
⇒HB=HC(hai cạnh tương ứng)(đpcm)
Ta có: ΔAHB=ΔAHC(cmt)
⇒\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)(đpcm)
c) Xét ΔHKB vuông tại K và ΔHIC vuông tại I có
BH=CH(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔHKB=ΔHIC(cạnh huyền-góc nhọn)
d) Ta có: AK+KB=AB(K nằm giữa A và B)
AI+IC=AC(I nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và KB=IC(ΔHKB=ΔHIC)
nên AK=AI
Xét ΔAKI có AK=AI(cmt)
nên ΔAKI cân tại A(định nghĩa tam giác cân)
⇒\(\widehat{AKI}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAKI cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AKI}=\widehat{ABC}\)
mà \(\widehat{AKI}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên KI//BC(dấu hiệu nhận biết hai đường thẳng song song)(đpcm)
hình tự vẽ
a, Xét tam giác AHB và AHC
AB=AC(đề bài)
góc BAH=HAC(AH là tia phân giác góc BAC)
AH là cạnh chung
=> tam giác AHB=AHC(C.G.C)
b,Vì tam giác AHB=AHC(câu a)
=> góc BHA=góc AHC( 2 cạnh tương ứng)
Mà BHA+ AHC=180 độ(2 góc kề bù)
=> BHA=AHC=1/2*180 độ
= 90 độ
=> AH vuông góc với BC.