K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2006}}+\frac{1}{2^{2007}}\)

\(\Rightarrow2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2006}}+\frac{1}{2^{2007}}\right)\)

\(\Rightarrow2A=\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{2006}}+\frac{2}{2^{2007}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2005}}+\frac{1}{2^{2006}}\)

\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2006}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2008}}\right)\)

\(\Rightarrow A=1-\frac{1}{2^{2008}}\)

9 tháng 4 2019

24 tháng 8 2019

A = 1 + 2 + 2 2 + . . . + 2 2007

2 A = 2 + 2 2 + . . . + 2 2007 + 2 2008

A = 2A - A =  ( 2 + 2 2 + . . . + 2 2007 + 2 2008 ) - ( 1 + 2 + 2 2 + . . . + 2 2007 ) =  2 2008 - 1

Vậy  A = 2 2008 - 1

30 tháng 4 2021

Đặt A=1+2+22+...+220081+2+22+...+22008

=>2A=2.(1+2+22+...+220081+2+22+...+22008)

=>2A=2+22+23+...+220092+22+23+...+22009

=>2A-A=(2+22+23+...+220092+22+23+...+22009)-(1+2+22+...+220081+2+22+...+22008)

=>A=22009−122009−1

=>A=(-1).(−2)2009(−2)2009+(-1).1

=>A=(-1).[(−2)2009+1][(−2)2009+1]

=>A=(-1).(1−22009)(1−22009)

=>1+2+22+...+220081+2+22+...+22008/1-2200922009

=(−1).(1−22009)1−22009(−1).(1−22009)1−22009=-1

 

 

Giải:

Đặt A=1+2+22+23+...+22008

    2A=2+22+23+24+...+22009

2A-A=(1+2+22+23+...+22008)-(2+22+23+24+...+22009)

    A =1-22009

Vậy B=1-22009/1-22009=1

Chúc bạn học tốt!

26 tháng 10 2023

\(A=4+2^2+2^3+...+2^{2006}\)

\(\mathsf{Đặt}:B=2^2+2^3+...+2^{2006}\\2B=2^3+2^4+...+2^{2007}\\2B-B=(2^3+2^4+...+2^{2007})-(2^2+2^3+...+2^{2006})\\B=2^{2007}-2^2\\B=2^{2007}-4\)

Thay \(B=2^{2007}-4\) vào A, ta được:

\(A=4+(2^{2007}-4)\\\Rightarrow A=2^{2007}\)

$\Rightarrow A$ là 1 luỹ thừa của cơ số 2.

Vậy: ...

19 tháng 4 2021

          Ta gọi tử của phân số B là A ta có:

A=1+2+2^2+2^3+...+2^2008

2A=2 + 2^2 + 2^3 + 2^4 +... + 2^2009

=>A=2^2009 - 1

   A=-1 + 2^2009

          ta thấy tử là số đối của mẫu =>B=\(\dfrac{-1}{1}\)

  

        

19 tháng 4 2021

cảm ơn bạn nhiều

 

9 tháng 7 2023

a) Đặt: \(A=1+2^2+2^3+...+2^{10}\)

\(\Rightarrow2A=2\left(1+2^2+2^3+...+2^9+2^{10}\right)\)

\(\Rightarrow2A=2+2^3+2^4+...+2^{10}+2^{11}\)

\(\Rightarrow2A-A=\left(2+2^3+2^4+...+2^{10}+2^{11}\right)-\left(1+2^2+2^3+...+2^{10}\right)\)

\(\Rightarrow A=\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2-1\right)+\left(2^{11}-2^2\right)\)

\(\Rightarrow A=0+0+...+1+\left(2^{11}-2^2\right)\)

\(\Rightarrow A=1+2^{11}-2^2=1+2048-4=2045\)

Vậy: \(1+2^2+2^3+...+2^{10}=2045\)

b) 

a] \(60-3\left(x-1\right)=2^3\cdot3\)

\(\Rightarrow60-3\left(x-1\right)=24\)

\(\Rightarrow3\left(x-1\right)=36\)

\(\Rightarrow x-1=12\)

\(\Rightarrow x=13\)

b] \(\left(3x-2\right)^3=2\cdot2^5\)

\(\Rightarrow\left(3x-2\right)^3=2^6\)

\(\Rightarrow\left(3x-2\right)^3=\left(2^2\right)^3\)

\(\Rightarrow3x-2=2^2\)

\(\Rightarrow3x=6\)

\(x=2\)

c] \(5^{x+1}-5^x=500\)

\(\Rightarrow5^x\left(5-1\right)=500\)

\(\Rightarrow5^x\cdot4=500\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

d] \(x^2=x^4\)

\(\Rightarrow x=x^2\)

\(\Rightarrow x-x^2=0\)

\(\Rightarrow x\left(1-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

9 tháng 7 2023

giúp mình đi các bạn

 

14 tháng 8 2023

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1

4 tháng 1 2020

a,  A = 1 + 5 3 + 5 5 + 5 7 + . . . + 5 99

B = 5 4 + 5 6 + 5 8 + . . . + 5 100 =  5 . ( 5 3 + 5 5 + 5 7 + . . . + 5 99 ) = 5(A – 1)

A + B – 1 =  5 3 + 5 4 + . . . + 5 100

5(A + B – 1) =  5 4 + 5 5 + . . . + 5 100 + 5 101

4(A + B – 1) = 5(A + B – 1) – (A + B – 1) =  5 101 - 5 3

=> A + B – 1 =  5 101 - 5 3 4

=> A + 5(A – 1) –1 =  5 101 - 5 3 4 => 6A – 6 =  5 101 - 5 3 4

=> A – 1 =  5 101 - 5 3 24

=> A =  5 101 - 5 3 + 24 24

b,  A = 1 - 2 + 2 2 - . . . - 2 2007

A = 1 + 2 2 + . . . + 2 2006 - 2 + 2 3 + . . . + 2 2007

A = ( 1 + 2 2 + . . . + 2 2006 ) - 2 . 1 + 2 2 + . . . + 2 2006

A = - 1 + 2 2 + . . . + 2 2006

Đặt  B = - 2 + 2 3 + . . . + 2 2007 =  - 2 . 1 + 2 2 + . . . + 2 2006 = 2A

A + B =  - 1 + 2 + 2 2 + . . . + 2 2006 + 2 2007

2(A+B) =  - 2 + 2 2 + . . . + 2 2006 + 2 2007 + 2 2008

A+B = 2(A+B)–(A+B) =  - 2 2008 - 1

=> A+2A =  - 2 2008 - 1

=> 3A =  - 2 2008 - 1

=> A =  - ( 2 2008 - 1 ) 3

c,  A = 7 + 7 3 + 7 5 + 7 7 + . . . + 7 1999

Đặt B =  7 2 + 7 4 + 7 6 + . . . + 7 1999 + 7 2000 =  7 ( 7 + 7 3 + 7 5 + 7 7 + . . . + 7 1999 ) = 7A

A+B =  7 + 7 2 + 7 3 + . . . + 7 1999 + 7 2000

7(A+B) =  7 2 + 7 3 + . . . + 7 1999 + 7 2000 + 7 2001

7(A+B) – (A+B) =  ( 7 2 + 7 3 + . . . + 7 1999 + 7 2000 + 7 2001 )  –  ( 7 + 7 2 + 7 3 + . . . + 7 1999 + 7 2000 )

6(A+B) =  7 2001 - 7

A+B =  7 2001 - 7 6

=> A + 7A =  7 2001 - 7 6 => 8A =  7 2001 - 7 6 => A =  7 2001 - 7 48

25 tháng 4 2019

16 tháng 9 2021

A \(=\)\(1+2^1+2^2+...+2^{2007}\)

⇒2 A \(=\)\(2+2^2+...+2^{2007}+2^{2008}\)

2A - A \(=\)( \(2+2^2+...+2^{2007}+2^{2008}\) ) - ( \(1+2^1+2^2+...+2^{2007}\) )

A\(=\)\(2^{2008}-1\)

\(3A=3\left(2^{2008}-1\right)\)

      \(=3.2^{2008}-3\)