K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

                                                                BÀI LÀM

a, xét tứ giác ADOE có:

góc A= góc E=góc D=90O

mà ta thấy: OE=OD( bán kính = nhau)

vậy tứ giác ADOE là hình vuông (dhnb)

 

 

27 tháng 11 2021

a) Dễ thấy tứ giác AEOD là hình chữ nhật (tứ giác có 3 góc vuông).
Mà OD = OE ( cùng bằng bán kính đường tròn nội tiếp tam giác ABC).
Nên tứ giác AEOD là hình vuông.
b) Gọi H là chân đường vuông góc kẻ từ O xuống BC.

Có SΔABC=SΔOAB+SΔOBC+SΔOAC
                     =12 OD.AB+12 OE.AC+12 OH.BC
                      =12 r.(AB+AC+BC)
                      =12 pr (pp là  chu vi của tam giác ABCABCrr là bán kính đường tròn nội tiếp).
 
c) Áp dụng định lý Pi-ta-go ta có: BC=AB2+AC2=10(cm).
Diện tích tam giác ABC là: 12 AB.AC=12 .6.8=24(cm2).
Chu vi tam giác ABC là: 6+8+10=24(cm).
Suy ra: 24=12 .24.rr=2(cm).

ta có: 
gọi H là trung điểm BC
AH=6
sinB=AH/AB=6/10
theo định lí sin: AC/sinB=2R
<=>10/(6/10)=2R=>R=25/3 cm ( ngoại tiếp)
S=1/2.AH.BC=48
p=18
S=pr
=>r=S/p=48/18=2,6 (nội tiếp)

15 tháng 10 2021

Gọi AM là đg cao tg ABC thì AM cũng là trung tuyến

Do đó \(BM=\dfrac{1}{2}BC=8\left(cm\right)\)

Áp dụng PTG: \(AM=\sqrt{AB^2-BM^2}=6\left(cm\right)\)

Ta có \(S=p\cdot r\) với p là nửa chu vi, S là diện tích, r là bán kính đg tròn nt tg ABC

Mà \(S=\dfrac{1}{2}AM\cdot BC=48\left(cm^2\right);p=\dfrac{10\cdot2+16}{2}=18\left(cm\right)\)

\(\Rightarrow r=\dfrac{S}{p}=\dfrac{48}{18}\approx2,7\left(cm\right)\)

11 tháng 1 2017

5 tháng 3 2019

30 tháng 4 2017

Chọn B.

19 tháng 5 2018

a, ta có : góc CFH=90°; góc HEB=90°(góc nội tiếp chắn 1/2đtròn)

xét tứ giác AEHF có góc A=gócE=góc F=90°

suy ra AEHF là hcn.

b, vì AEHF là hcn suy ra AEHF nội tiếp suy ra góc AFE=AHE( góc nội tiếp chắn cung AE) (1)

ta lại có: góc AHE=ABH(cùng bù với BAH) (2)

từ 1 và 2 suy ra góc AFE=ABH

mà góc CFE+AFE=180°

suy ra góc CFE+ABH=180°

suy ra BEFC nội tiếp

c, gọi I và K lần lượt là tâm đtròn đường kính HB và HC

gọi O là giao điểm AH và EF

vì AEHF là hcn suy ra OF=OH suy ra tam giác FOH cân tại O

suy ra góc OFH=OHF

vì CFH vuông tại F suy ra KC=KF=KH

suy ra tam giác HKF cân tại K

suy ra góc KFH=KHF

mà góc KHF+FHA=90°

suy ra góc KFH+HFO=90°

suy ra EF là tiếp tuyến của đtròn tâm K

tương tự EF là tiếp tuyến đường tròn tâm I

vậy EF là tiếp tuyến chung của hai nửa đường tròn đường kính HB và HC

5 tháng 6 2019

a)

1. Ta có : ÐBEH = 900 ( nội tiếp chắn nửc đường tròn )

=> ÐAEH = 900 (vì là hai góc kề bù). (1)

ÐCFH = 900 ( nội tiếp chắn nửc đường tròn )

=> ÐAFH = 900 (vì là hai góc kề bù).(2)

ÐEAF = 900 ( Vì tam giác  ABC vuông tại A) (3)

Từ (1), (2), (3) => tứ giác AFHE là hình chữ nhật ( vì có ba góc vuông)

b)  Tứ giác AFHE là hình chữ nhật nên nội tiếp được một đường tròn

=>ÐF1=ÐH1 (nội tiếp chắn cung AE) .

Theo giả thiết AH ^BC nên AH là tiếp tuyến chung của hai nửa đường tròn  (O1) và (O2)     

 => ÐB1 = ÐH1 (hai góc nội tiếp cùng chắn cung HE) => ÐB1= ÐF1 => ÐEBC+ÐEFC = ÐAFE + ÐEFC màÐAFE + ÐEFC = 1800 (vì là hai góc kề bù) => ÐEBC+ÐEFC = 1800  mặt khác ÐEBC và ÐEFC là hai góc đối của tứ giác BEFC do đó BEFC là tứ giác nội tiếp.

c)

Tứ giác AFHE là hình chữ nhật => IE = EH => DIEH cân tại I => ÐE1 = ÐH1 .

DO1EH cân tại O1 (vì có O1E vàO1H cùng là bán kính) => ÐE2 = ÐH2.

=> ÐE1 + ÐE2 = ÐH1 + ÐH2 mà ÐH1 + ÐH2 = ÐAHB = 900 => ÐE1 + ÐE2 = ÐO1EF = 900

=> O1E ^EF .

Chứng minh tương tự ta còng có O2F ^ EF. Vậy EF là tiếp tuyến chung của hai nửa đường tròndường kính BH và HC.

18 tháng 1 2021

Hình như câu b chưa rõ lắm, tam giác ABC cân tại đâu?

18 tháng 1 2021

đề chỉ ghi tam giác cân thôi bạn

17 tháng 5 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng định lí Pitago vào tam giác vuông ABC ta có :

B C 2 = A B 2 + A C 2 = 3 2 + 4 2  = 25

Suy ra : BC = 5 (cm)

Theo tính chất hai tiếp tuyến giao nhau ta có:

AD = AE

BD = BF

CE = CF

Mà: AD = AB – BD

AE = AC – CF

Suy ra: AD + AE = AB – BD + (AC – CF)

= AB + AC – (BD + CF)

= AB + AC – (BF + CF)

= AB + AC – BC

Suy ra:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9