K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

\(A=a^2\left(2a-3\right)+b^2\left(-3+2b\right)\)

\(=2a^3-3a^2-3b^2+2b^3\)

\(=2\left(a^3+b^3\right)-3a^2-3b^2\)

\(=2\left(a+b\right)\left(a^2-ab+b^2\right)-3a^2-3b^2\)

\(=2\left(a^2-ab+b^2\right)-3a^2-3b^2\)(vì a + b = 1)

\(=2a^2-2ab+2b^2-3a^2-3b^2\)

\(=-a^2-2ab-b^2=-\left(a^2+2ab+b^2\right)\)

\(=-\left(a+b\right)^2=-1^2=-1\)(vì a + b = 1)

2 tháng 5 2023

a. Ta có: a > b

4a > 4b ( nhân cả 2 vế cho 4)

4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)

b. Ta có: a > b

-2a < -2b ( nhân cả 2 vế cho -2)

1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)

d. Ta có: a < b 

-2a > -2b ( nhân cả 2 vế cho -2)

5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)

 

2 tháng 5 2023

Cảm ưn 😆😊🥰🤩😽🙊🙈🙉

10 tháng 10 2021

M = 2(a+b) ( a^2 - ab + b ^2) - 3( a^2 + b ^2)

    =  2 (a^2 + b^2 ) - 2ab - 3(a^2 + b^2)

    = - ( a^2+2ab+b^2) = - (a+b)^2 = -1

Chúc bạn học tốt!

10 tháng 10 2021

Thanks!