K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 5 2022

Bạn có thể tham khảo bài này. Hướng giải tương tự.

https://hoc24.vn/cau-hoi/cho-phuong-trinh-x2-4xm0m-la-tham-soa-tinh-cac-gia-tri-cua-m-de-phuong-trinh-co-cac-nghiem-x1x2-thoa-man-x1-x2-va-x22-x1218.6292592319064

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Không tồn tại giá trị nào của $m$ thỏa mãn, vì $x_1^2+x_2^2+2019\geq 2019>0$ với mọi $m\in\mathbb{R}$

8 tháng 6 2021

PT có nghiệm `<=> \Delta' >=0`

`<=> (m-1)^2-(m^2+2)>=0`

`<=>-2m-1>=0`

`<=>m <= -1/2`

Viet: `x_1+x_2=2m-2`

`x_1x_2=m^2+2`

`x_1^2+x_2^2=10`

`<=>(x_1+x_2)^2-2x_1x_2=10`

`<=>(2m-2)^2-2(m^2+2)=10`

`<=> 2m^2-8m=10`

`<=>` \(\left[{}\begin{matrix}m=-1\left(TM\right)\\m=5\left(L\right)\end{matrix}\right.\)

Vậy `m=-1`.

18 tháng 6 2023

a)

Thế m = 2 vào phương trình được: \(x^2-4x+2+1=0\Leftrightarrow x^2-4x+3=0\)

nhẩm nghiệm có a + b + c = 0 (1 - 4 + 3 = 0) nên: \(x_1=1,x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Vậy phương trình có tập nghiệm \(S=\left\{1;3\right\}\)

b) \(\Delta'=\left(-2\right)^2-\left(m+1\right)=4-m-1=3-m\)

Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow3-m\ge0\Rightarrow m\le3\)

Theo vi ét có \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m+1\end{matrix}\right.\)

Theo đề: \(x_1^2+x_2^2=5\left(x_1+x_2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5\left(x_1+x_2\right)=0\)

\(\Leftrightarrow4^2-2\left(m+1\right)-5.4=0\)

\(\Leftrightarrow16-20-2m-2=0\)

\(\Leftrightarrow-6-2m=0\Rightarrow m=-\dfrac{6}{2}=-3\) (thỏa mãn)

Vậy m = -3 là giá trị cần tìm.

a: Khi m=2 thì pt sẽ là x^2-4x+3=0

=>x=1; x=3

b: =>(x1+x2)^2-2x1x2-5(x1+x2)=0

=>4^2-2(m+1)-5*4=0

=>-4-2(m+1)=0

=>m+1=-2

=>m=-3

12 tháng 11 2021

Để PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(m-1\right)^2-4\left(m+6\right)\ge0\)

\(\Leftrightarrow m^2-6m-23\ge0\\ \Leftrightarrow\left[{}\begin{matrix}m\le3-4\sqrt{2}\\m\ge3+4\sqrt{2}\end{matrix}\right.\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=m+6\end{matrix}\right.\)

\(x_1^2+x_2^2=10\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\\ \Leftrightarrow\left(1-m\right)^2-2\left(m+6\right)=10\\ \Leftrightarrow m^2-2m+1-2m-12=10\\ \Leftrightarrow m^2-4m-21=0\\ \Leftrightarrow\left[{}\begin{matrix}m=7\left(ktm\right)\\m=-3\left(tm\right)\end{matrix}\right.\Leftrightarrow m=-3\)

NV
18 tháng 3 2021

\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)

\(P=x_1x_2-\left(x_1^2+x_2^2\right)=3x_1x_2-\left(x_1+x_2\right)^2\)

\(P=3\left(m-2\right)-m^2=-m^2+3m-6=-\left(m-\dfrac{3}{2}\right)^2-\dfrac{15}{4}\le-\dfrac{15}{4}\)

\(P_{max}=-\dfrac{15}{4}\) khi \(m=\dfrac{3}{2}\)

\(P_{min}\) ko tồn tại

Bạn ghi sai đề?

27 tháng 3 2021

\(Δ=(-m)^2-4.1.(m-2)\\=m^2-4m+8\\=m^2-4m+4+4\\=(m-2)^2+4\)

\(\to\) Pt luôn có 2 nghiệm phân biệt

Theo Viét

\(\begin{cases}x_1+x_2=m\\x_1x_2=m-2\end{cases}\)

\(x_1x_2-x_1^2-x_2^2\\=3x_1x_2-(x_1^2+2x_1x_2+x_2^2)\\=3x_1x_2-(x_1+x_2)^2\\=3(m-2)-m^2\\=-m^2+3m-6\\=-\bigg(m^2-2.\dfrac{3}{2}.m+\dfrac{9}{4}+\dfrac{15}{4}\bigg)\\=-\bigg(m-\dfrac{3}{2}\bigg)^2-\dfrac{15}{4}\le -\dfrac{15}{4}\\\to \max P=-\dfrac{15}{4}\leftrightarrow m-\dfrac{3}{2}=0\\\leftrightarrow m=\dfrac{3}{2}\)

Vậy \(\max P=-\dfrac{15}{4}\)

27 tháng 5 2021

PT có 2 nghiệm phân biệt`<=> \Delta' >0`

`<=> m^2-1>0`

`<=> m<-1 ; 1 <m`

Viet: `x_1+x_2=2m`

`x_1x_2=1`

Theo đề: `x_1^2+x_2^2=8`

`<=> (x_1+x_2)^2-2x_1x_2=8`

`<=> 4m^2-2=8`

`<=> 4m^2 - 10=0`

`<=>` \(\left[{}\begin{matrix}m=\dfrac{\sqrt{10}}{2}\\m=-\dfrac{\sqrt{10}}{2}\end{matrix}\right.\)

Vậy `m=\pm \sqrt10/2`.

27 tháng 5 2021

nhanh đi đang gấp lắm

15 tháng 7 2019

1) \(x^2-2mx+m-2=0\) (1) 

pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\) 

=> pt luôn có 2 nghiệm phân biệt x1, x2 

Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)

\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)

xin 1slot sáng giải