Tìm x, biết :
\(a)\)\(\left(x-1\right)^3=-8\)
\(b)\)\(x-3\sqrt{x}=0\)
Dễ màk cơ hội lấy điểm :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=3+\left(-2\right)\cdot\sqrt{3}+3\cdot\sqrt{3}-2-\sqrt{3}\)
\(=3-2=1\)
\(B=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b: B<A
=>B-1<0
=>\(\dfrac{\sqrt{x}-1-\sqrt{x}}{\sqrt{x}}< 0\)
=>-1/căn x<0
=>căn x>0
=>x>0 và x<>1
\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)
a, => 3.(x-1).27.(x-1) = 8.2
=> 81.(x-1)^2 = 16
=> (x-1)^2 = 16/81
=> x-1=-4/9 hoặc x-1=4/9
=> x=5/9 hoặc x=13/9
b, => \(\sqrt{x}.\left(\sqrt{x}-3\right)\) = 0
=> \(\sqrt{x}=0\)hoặc \(\sqrt{x}-3=0\)
=> x=0 hoặc x=9
Tk mk nha
Bài 42 , Có \(m=\sqrt[3]{4+\sqrt{80}}-\sqrt[3]{\sqrt{80}-4}\)
\(\Rightarrow m^3=4+\sqrt{80}-\sqrt{80}+4-3m\sqrt[3]{\left(4+\sqrt{80}\right)\left(\sqrt{80-4}\right)}\)
\(\Leftrightarrow m^3=8-3m\sqrt[3]{80-16}\)
\(\Leftrightarrow m^3=8-3m\sqrt[3]{64}\)
\(\Leftrightarrow m^3=8-12m\)
\(\Leftrightarrow m^3+12m-8=0\)
Vì vậy m là nghiệm của pt \(x^3+12x-8=0\)
Bài 44, c, \(D=\sqrt[3]{2+10\sqrt{\frac{1}{27}}}+\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)
\(\Rightarrow D^3=2+10\sqrt{\frac{1}{27}}+2-10\sqrt{\frac{1}{27}}+3D\sqrt[3]{\left(2+10\sqrt{\frac{1}{27}}\right)\left(2-10\sqrt{\frac{1}{27}}\right)}\)
\(\Leftrightarrow D^3=4+3D\sqrt[3]{4-\frac{100}{27}}\)
\(\Leftrightarrow D^3=4+3D\sqrt[3]{\frac{8}{27}}\)
\(\Leftrightarrow D^3=4+2D\)
\(\Leftrightarrow D^3-2D-4=0\)
\(\Leftrightarrow D^3-4D+2D-4=0\)
\(\Leftrightarrow D\left(D^2-4\right)+2\left(D-2\right)=0\)
\(\Leftrightarrow D\left(D-2\right)\left(D+2\right)+2\left(D-2\right)=0\)
\(\Leftrightarrow\left(D-2\right)\left[D\left(D+2\right)+2\right]=0\)
\(\Leftrightarrow\left(D-2\right)\left(D^2+2D+2\right)=0\)
\(\Leftrightarrow\left(D-2\right)\left[\left(D+1\right)^2+1\right]=0\)
Vì [....] > 0 nên D - 2 = 0 <=> D = 2
Ý d làm tương tự nhá
a)\(\left(x-1\right)^3=-8\Leftrightarrow\left(x-1\right)^3=\left(-2\right)^3\Leftrightarrow x-1=-2\Leftrightarrow x=-2+1=-1\)
b)\(x-3\sqrt{x}=0\Rightarrow x=3.\sqrt{x}\Rightarrow x^2=\left(3\sqrt{x}\right)^2\Leftrightarrow x^2=9x\Leftrightarrow x^2-9x=0\Leftrightarrow x.\left(x-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=9\end{cases}}\) vậy với x=0 hoặc x=9 thì...
a) \(\left(x-1\right)^3=-8\)
\(\Rightarrow\left(x-1\right)^3=\left(-2\right)^3\)
\(\Rightarrow x-1=-2\)
\(\Rightarrow x=-2+1\)
\(\Rightarrow x=-1\)
Vậy x=-1