Tìm n thuộc N để phép chia sau là phép chia hết
a,(12x3y3+9x4y5-3x5y8):3xn+1yn+3
b,(5xn-2y7-8xn-1y8):5x3yn+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đa thức 5 x 3 - 7 x 2 + x chia hết cho 3 x n nên mỗi hạng tử của đa thức chia hết cho x n
=> hạng tử x – có số mũ nhỏ nhất của đa thức chia hết cho 3 x n
Do đó, x : x n ⇒ 0 ≤ x ≤ 1 . Vậy n ∈ {0; 1}
\(\dfrac{3x^{n+1}y^2-2x^5y^n+x^4y^2}{2x^4y^{n-2}}=\dfrac{3}{4}x^{n+1-4}\cdot y^{2-n+2}-x^{5-4}\cdot y^{n-n+2}+\dfrac{1}{2}x^{4-4}\cdot y^{2-n+2}\)
\(=\dfrac{3}{4}x^{n-3}y^{4-n}-xy^2+\dfrac{1}{2}y^{4-n}\)
Để đây là phép chia hết thì n-3>=0 và 4-n>=0
=>3<=n<=4
=>n=3;n=4
x n y n + 1 : x 2 y 5 = x n : x 2 y n + 1 : y 5 = x n - 2 . y n - 4 là phép chia hết
Vì x 5 - 2 x 3 - x chia hết cho 7xn nên mỗi hạng tử của đa thức chia hết cho 7 x n
Suy ra: x chia hết cho 7 x n ( trong đó x là hạng tử có số mũ nhỏ nhất).
Nên n ≤ 1
Vì n ∈ N ⇒ n = 0 hoặc n = 1
Vậy n = 0 hoặc n = 1 thì x 5 - 2 x 3 - x : 7 x n
Vì 5 x 5 y 5 - 2 x 3 y 3 - x 2 y 2 chia hết cho 2 x n y n nên mỗi hạng tử của đa thức đều chia hết cho 2 x n y n
Suy ra: x 2 y 2 chia hết cho 2 x n y n trong đó x 2 y 2 là hạng tử có số mũ nhỏ nhất).
Suy ra: n ≤ 2
Vì n ∈ N ⇒ n = 0; n = 1; n = 2
Vậy với n ∈ {0; 1; 2} thì 5 x 5 y 5 - 2 x 3 y 3 - x 2 y 2 : 2 x n y n
a) \(35x^9y^n=5.\left(7x^9y^n\right)\)
Để \(35x^9y^n⋮\left(-7x^7y^2\right)\)
\(\Rightarrow n\in\left\{0;1;2\right\}\)
b) \(5x^3-7x^2+x=3x\left(\dfrac{5}{3}x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)\)
Để \(\left(5x^3-7x^2+x\right)⋮3x^n\)
\(\Rightarrow3x\left(\dfrac{5}{3}x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)⋮3x^n\)
\(\Rightarrow n\in\left\{0;1\right\}\)
Vì đa thức 13 x 4 y 3 - 5 x 3 y 3 + 6 x 2 y 2 chia hết cho 5 x n y n nên mỗi hạng tử của đa thức trên chia hết cho 5 x n y n Do đó, hạng tử 6 x 2 y 2 chia hết cho 5 x n y n ⇒ 0 ≤ n ≤ 2 . Vậy n ∈ {0;1;2}
x 4 : x n = x 4 - n là phép chia hết nên 4 – n ≥ 0 ⇒ 0 ≤ n ≤ 4
suy ra: n ∈ {0; 1; 2; 3; 4}