giúp mình với
(x+1/x+2)^2+(x+1/x-4)+3(2x-4/x-4)^2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}.\Leftrightarrow\dfrac{x-1-3x}{3}=\dfrac{x-2}{2}.\Leftrightarrow\dfrac{-2x-1}{3}-\dfrac{x-2}{2}=0.\)
\(\Leftrightarrow\dfrac{-4x-2-3x+6}{6}=0.\Rightarrow-7x+4=0.\Leftrightarrow x=\dfrac{4}{7}.\)
\(2.\left(x-2\right)\left(2x-1\right)=x^2-2x.\Leftrightarrow\left(x-2\right)\left(2x-1\right)-x\left(x-2\right)=0.\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1-x\right)=0.\Leftrightarrow\left(x-2\right)\left(x-1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=1.\end{matrix}\right.\)
\(3.3x^2-4x+1=0.\Leftrightarrow\left(x-1\right)\left(x-\dfrac{1}{3}\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=\dfrac{1}{3}.\end{matrix}\right.\)
\(4.\left|2x-4\right|=0.\Leftrightarrow2x-4=0.\Leftrightarrow x=2.\)
\(5.\left|3x+2\right|=4.\Leftrightarrow\left[{}\begin{matrix}3x+2=4.\\3x+2=-4.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}.\\x=-2.\end{matrix}\right.\)
\(1,\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\\ \Leftrightarrow\dfrac{x-1}{3}-x=\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{2\left(x-1\right)-6x}{6}=\dfrac{3\left(x-2\right)}{6}\\ \Leftrightarrow2\left(x-1\right)-6x=3\left(x-2\right)\\ \Leftrightarrow2x-2-6x=3x-6\\ \Leftrightarrow-4x-2=3x-6\)
\(\Leftrightarrow3x-6+4x+2=0\\ \Leftrightarrow7x-4=0\\ \Leftrightarrow x=\dfrac{4}{7}\)
\(2,\left(x-2\right)\left(2x-1\right)=x^2-2x\\ \Leftrightarrow2x^2-4x-x+2=x^2-2x\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(3,3x^2-4x+1=0\\ \Leftrightarrow\left(3x^2-3x\right)-\left(x-1\right)=0\\ \Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(4,\left|2x-4\right|=0\\ \Leftrightarrow2x-4=0\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)
\(5,\left|3x+2\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
\(6,\left|2x-5\right|=\left|-x+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=-x+2\\2x-5=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=7\\x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=3\end{matrix}\right.\)
1) \(\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
2) \(x^2-2x=24\)
\(\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow x^2+4x-6x-24=0\)
\(\Leftrightarrow x\left(x+4\right)-6\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
\(\left(x-\dfrac{3}{2}\right)\times\left(2x+1\right)>0\)
Th1:
\(x-\dfrac{3}{2}>0\Leftrightarrow x>\dfrac{3}{2}\)
\(2x+1>0\Leftrightarrow2x>1\Leftrightarrow x>\dfrac{1}{2}\)
( 1 )
Th2:
\(x-\dfrac{3}{2}< 0\Leftrightarrow x< \dfrac{3}{2}\)
\(2x+1< 0\Leftrightarrow2x< -1\Leftrightarrow x< -\dfrac{1}{2}\)
( 2 )
Từ ( 1 ) và ( 2 ), ta có:
\(\Rightarrow x< -\dfrac{1}{2};x>\dfrac{3}{2}\)
\(\left(2-x\right)\times\left(\dfrac{4}{5}-x\right)< 0\)
Th1:
\(2-x>0\Leftrightarrow x>2\)
\(\dfrac{4}{5}-x< 0\Leftrightarrow x< \dfrac{4}{5}\)
( Loại )
Th2:
\(2-x< 0\Leftrightarrow x< 2\)
\(\dfrac{4}{5}-x>0\Leftrightarrow x>\dfrac{4}{5}\)
=> \(\dfrac{4}{5}< x< 2\)
`2)x^4+2x^3-x^2-2x+1=0`
`<=>x^4+2x^3+x^2-2x^2-2x+1=0`
`<=>(x^2+x)^2-2(x^2+x)+1=0`
`<=>(x^2+x-1)^2=0`
`<=>x^2+x-1=0`
`\Delta=1+4=5`
`=>x_{1,2}=(-1+-sqrt5)/2`
Vậy `S={(-1+sqrt5)/2,(-1+sqrt5)/2`
`3)x^4-4x^3-9x^2+8x+4=0`
`<=>x^4-x^3-3x^3+3x^2-12x^2+12x-4x+4=0`
`<=>(x-1)(x^3-3x^2-12x-4)=0`
`<=>(x-1)(x^3+2x^2-5x^2-10x-2x-4)=0`
`<=>(x-1)(x+2)(x^2-5x-10)=0`
`+)x=1`
`+)x=-2`
`+)x^2-5x-10=0`
`Delta=25+40=65`
`=>x_{12}=(5+sqrt{65})/2`
mk chỉnh lại đề nhé:
\(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)
\(\Leftrightarrow\) \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\)
Đặt: \(\frac{x+1}{x-2}=a;\) \(\frac{x-2}{x-4}=b\)
\(\Rightarrow\)\(a.b=\frac{x+1}{x-2}.\frac{x-2}{x-4}=\frac{x+1}{x-4}\)
Khi đó phương trình trở thành:
\(a^2-ab-12b^2=0\)
\(\Leftrightarrow\)\(\left(a-3b\right)\left(a+4b\right)=0\)
đến đây bn thay trở lại rồi tìm nghiệm
+) \(a=3b\) thì phương trình vô nghiệm
+) \(a=-4b\)thì phương trình có tập nghiệm \(S=\left\{3;\frac{4}{5}\right\}\)
P/S: bn tham khảo nhé
bạn chắt mình giải đúng chứ