CHO C=\(\frac{1}{2}\).\(\frac{3}{4}\).\(\frac{5}{6}\)....\(\frac{199}{200}\)
CHỨNG MINH RẰNG \(C^2\)<\(\frac{1}{201}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 1/2<2/3 ; 3/4<4/5;5/6<6/7;...;199/200<200/201
suy ra A^2=1/2^2*3/4^2*5/6^2*...*199/200^2<1/2*2/3*3/4*4/5*5/6*6/7*...*199/200/200/201
suy ra A^2<1/201(đpcm)
Ta có:
\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{199}{200}< \frac{200}{201}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{199}{200}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{200}{201}\)
\(\Rightarrow A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{200}{201}\)
\(\Rightarrow A^2< \left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{200}{201}\right)\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{199}{200}\right)\)
\(\Rightarrow A^2< \frac{1}{201}\left(đpcm\right)\)
Lời giải:
Ta có:
\(\text{VT}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\text{VP}\)
Ta có đpcm.
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{4}-....-\frac{1}{100}\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)+\left(\frac{1}{101}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{199}+\frac{1}{200}\) (ĐPCM)
Ta có : 1 - 1/2 + 1/3 - 1/4 + ....- 1/200
= (1 + 1/3 + 1/5 + ....+ 1/199) - ( 1/2 + 1/4 + 1/6 + .... + 1/200)
= ( 1 + 1/3 +...+ 1/199) + (1/2 +1/4 + ...+ 1/200) - 2(1/2+1/4+...+ 1/200)
= (1+1/2+1/3+....+1/199 + 1/200) - (1 +1/2 +1/3 +....+1/100)
= 1/101 + 1/102+ 1/103 + .... + 1/200
chúc bạn học tốt!!!!!!!
Bạn tham khảo tại Câu hỏi của lê chí dũng - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
Chúc bạn học tốt!
Ta có : \(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{200}=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)\(\left(đpcm\right)\)
Ta có:
\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{199}{200}< \frac{200}{201}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{199}{200}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\)
\(\Rightarrow C< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\)
\(\Rightarrow C^2< \left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\right).\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{199}{200}\right)\)
\(\Rightarrow C^2< \frac{1}{201}\left(dpcm\right)\)