Biết khoảng cách từ trọng tâm tam giác ABC đến các cạnh tỉ lệ với 2 ; 3 ;4 và chu vi của tam giác ABC là 26cm . Tính các cạnh của tam giác ABC.
Nhờ mấy e lp 7 giải hộ cái nhak
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta tính được \(AG=a\dfrac{\sqrt{3}}{3}\)
Từ gt ta có:
\(\widehat{\left(SA,\left(ABC\right)\right)}=\widehat{\left(SA,AG\right)}=\widehat{SAG}=60^0\)(Vì S.ABC là chóp tam giác đều nên \(SG\perp\left(ABC\right)\))
Khi đó SG=AG.tan60=a
Gọi M là trung điểm BC \(\Rightarrow GM=a\dfrac{\sqrt{3}}{6}\)
Đặt d(G,(SBC))=x
Áp dụng mô hình "điểm tốt - vẽ hai bước" cho hình chóp S.GBC với G là "điểm tốt" ta có:
\(\dfrac{1}{x^2}=\dfrac{1}{SG^2}+\dfrac{1}{GM^2}=\dfrac{1}{a^2}+\dfrac{1}{\left(a\dfrac{\sqrt{3}}{6}\right)^2}\)
\(\Rightarrow x=\dfrac{a}{\sqrt{13}}\)
Mô hình "điểm tốt - vẽ hai bước": Cho hình chóp S.ABC với \(SA\perp\left(ABC\right)\). Kẻ \(AH\perp BC,AK\perp SH\) thì d(A,(SBC))=AK.
CM: Ta có: \(SA\perp\left(ABC\right)\Rightarrow SA\perp AH\)
Mà \(AH\perp BC\Rightarrow BC\perp\left(SAH\right)\)
\(\Rightarrow\left(SBC\right)\perp\left(SAH\right)\) theo giao tuyến SH
Mà \(AK\perp SH,AK\subset\left(SAH\right)\) \(\Rightarrow AK\perp\left(SBC\right)\), dễ dàng suy ra đpcm
tự vẽ hình ta vẽ AK là đường trung tuyến của cạnh huyền
xét tam giác ABC có:
AB2+AC2 = BC2 ( đ/lý py-ta-go)
=> 32 + 42 = BC2
=> 9 + 16 = BC2
=> BC = 25
=> BC = \(\sqrt{25}=5cm\)
tam giác ABC có AK là đường trung tuyến vs cạnh huyền => AK = \(\frac{BC}{2}=\frac{5}{2}=2,5\)
=> AG = \(\frac{2}{3}AK\) (đ/lý) => \(\frac{2}{3}x2,5=1,66666667\)
hình như mk làm sai hoặc bn sai đề
để ghi lại khúc cuối
AG = \(\frac{2}{3}AK=>\frac{2}{3}x\frac{5}{2}=\frac{5}{3}cm\)
có \(5:2=\frac{5}{2}\) nên mới có 5/2
Gọi độ dài các cạnh BC a
, ,
AC b AB c . Độ dài các đường cao kẻ
từ đỉnh lần lượt là
Aagiác ABC đến các cạnh tỉ lệ với các số ;
3
; nên ta có
,
B
,
C
x
, ,
z
. Khoảng cách từ trọng tâm tam ,x/2=y/3=z/3=k Mặt khác ax by cz 2SABC nên , tự gjaj tjep nha