Cho tam giác abc .m là trung điểm của cạnh bch .cm ma bé hơn ab +ac :2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ ░░░███░███░███░███░█░█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ ░░░█░░░█░█░░█░░█░█░█░█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ ░░░███░███░░█░░██░░░█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ ░░░█░░░█░█░░█░░█░█░░█░░░░░░░░░░░░░████░░█████░░░██░ ░░░█░░░█░█░███░█░█░░█░░░░░░░░░░░░████░░█████░░░███░ ░░░░░░░░░░░░░░░░░░░░░░░░██░░░░░░████░░█████░░░████░ ░░░░░░░░░░░░░░░░░░░███████░██░░█████░██████░░██░██░ ░░░░░░░░░░░░█████████████░███░██████░█████░░░░░░██░ ░░░░░░░░░███████████████░████░██████░█████░░░░░░██░ ░░░░░░░█████████████████████░██████░██████░░░░░░██░ ░░░░░██████████████████████░███████░█████░░░░░░███░ ░░░░░█████████████████████████████░██████░░░░░████░ ░░░░████████████████████████████████████░░░░░████░░ ░░░░███████████████████████████████████░░░░█████░░░ ░░░░█████░░░░░░░░████████████████████░░░░██████░░░░ ░░░░░██░░░░░░░░░░████████████████████████████░░░░░░ ░░░░░░░░░░░░░░░░░██████████████████████████░░░░░░░░ ░░░░░░░░░░░░░░░░░░░████████████████████░░░░░░░░░░░░ ░░░░░░░░░░░░░░░░░░░░░░░█████████████░░░░░░░░░░░░░░░ ░░░░░░░░░░░░░░░░░░░░░░░████████░░░░░░░░░░░░░░░░░░░░ ░░░░░░░░░░░░░░░░░░░████████░░░░░░░░░░░░░░░░░░░░░░░░ ░░░░░░░██░░░░░░░███████░░░░░░███░███░███░█░░░░░░░░░ ░░░░░░███░░░███████░░░░░░░░░░░█░░█░█░░█░░█░░░░░░░░░ ░░░░███████████░░░░░░░░░░░░░░░█░░███░░█░░█░░░░░░░░░ ░░░████████░░░░░░░░░░░░░░░░░░░█░░█░█░░█░░█░░░░░░░░░ ░░████░░░░░░░░░░░░░░░░░░░░░░░░█░░█░█░███░███░░░░░░░ ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
\(\widehat{C}=180^o-\widehat{A}-\widehat{B}=180^o-80^o-60^o=40^o\)
Có \(\widehat{C}< \widehat{B}< \widehat{A}\) suy ra \(AB< AC< BC\).
Xét tứ giác \(ABDC\) có hai đường chéo \(AD,BC\) cắt nhau tại trung điểm mỗi đường nên \(ABDC\) là hình bình hành.
Suy ra \(AB=CD\).
\(AB+AC=AB+CD>AD\) (bất đẳng thức tam giác trong tam giác \(ACD\))
Xét tam giác \(ACD\) có hai trung tuyến \(AN,CM\) cắt nhau tại \(K\) nên \(K\) là trọng tâm tam giác \(ACD\) suy ra \(CK=\dfrac{2}{3}CM\).
Mà \(BC=2CM\) suy ra \(BC=3CK\).
a: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMEC
=>AB=EC
Ta có: ΔMAB=ΔMEC
=>\(\widehat{MAB}=\widehat{MEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
b: Ta có: AB//CE
AB\(\perp\)AC
Do đó: CE\(\perp\)CA
=>ΔCAE vuông tại C
c: Xét ΔABC vuông tại A và ΔCEA vuông tại C có
CA chung
AB=CE
Do đó: ΔABC=ΔCEA
d: ta có: ΔABC=ΔCEA
=>BC=EA
mà \(AM=\dfrac{1}{2}EA\)
nên \(AM=\dfrac{1}{2}BC\)
e: Xét ΔMAC và ΔMEB có
MA=ME
\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMEB
=>\(\widehat{MAC}=\widehat{MEB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BE
f: Xét ΔMHC và ΔMKB có
MB=MC
\(\widehat{MBK}=\widehat{MCH}\)
BK=CH
Do đó: ΔMHC=ΔMKB
=>\(\widehat{HMC}=\widehat{KMB}\)
mà \(\widehat{KMB}+\widehat{KMC}=180^0\)(hai góc kề bù)
nên \(\widehat{HMC}+\widehat{KMC}=180^0\)
=>K,M,H thẳng hàng
a) Ta có M là trung điểm của BC, vậy BM = MC. Vì MA = ME, nên ta có MA = ME = MC. Do đó, tam giác MEC là tam giác đều.
Vì BM = MC và tam giác MEC là tam giác đều, nên ta có AB = EC và AB // EC.
b) Vì tam giác ABC là tam giác vuông tại A, nên góc BAC = 90 độ.
Vì AB // EC, nên góc BAC = góc ECA.
Vậy tam giác ACE cũng là tam giác vuông tại C.
c) Tam giác ABC và tam giác CEA có cạnh chung AC và góc AEC = góc BAC = 90 độ (vì tam giác ABC là tam giác vuông tại A).
Vậy theo trường hợp góc - cạnh - góc, ta có tam giác ABC và tam giác CEA là hai tam giác đồng dạng.
d) Ta đã biết M là trung điểm của BC, vậy BM = MC.
Vì MA = ME, nên MA = MC/2.
Do đó, AM = 1/2 BC.
e) Ta đã biết AB = EC và AB // EC.
Vì MA = ME, nên MA = MC.
Vậy theo trường hợp cạnh - góc - cạnh, ta có tam giác MAC và tam giác MEC là hai tam giác đồng dạng.
Vậy AC = BE và AC // BC.
f) Trên BE lấy K, trên AC lấy H sao cho BK = CH.
Vì M là trung điểm của BC, nên MK = MC/2.
Vì tam giác MEC là tam giác đều, nên góc MCE = 60 độ.
Vậy góc MCK = 60 độ.
Vì BK = CH, nên góc BKC = góc CHB.
Vậy góc BKC = góc CHB = 60 độ.
Vậy tam giác BKC và tam giác CHB là hai tam giác đều.
Vậy 3 điểm K, M, H thẳng hàng.
a) ABC có
MA = MB ( gt )
NB = NC ( gt )
=> MN là đường trung bình của ABC
=> MN = AC = .20 = 10 ( cm )
vuông tại A
=>
=>
= 25 cm
có
AN là đường trung tuyến ( NB = NC )
=> AN = = = 12,5 ( cm ))
b) ABDC có 2 đường chéo AD , BC cắt nhau tại N
mà CN = ND ( gt )
AN = ND ( gt )
=> ABDC là hình bình hành
mà
=> ABDC là hình chữ nhật
*(Cho mình 1 nút like vs bn ơi )