Tìm m để phương trình vô nghiệm
(2m-1)x+3m-5=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
:))
\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)
\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)
\(b,\left(m-1\right)x^2-2mx+m-2=0\)
\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)
\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)
\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)
\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)
\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)
Pt vô nghiệm khi:
\(\Delta=\left(2m+1\right)^2-\left(5m^2+3m+16\right)< 0\)
\(\Leftrightarrow-m^2+m-15< 0\) (luôn đúng)
Vậy pt đã cho vô nghiệm với mọi m
TH1: m=-1/2
BPT sẽ là -2x-3/2-3>0
=>-2x>9/2
=>x<-9/4
=>Loại
TH2: m<>-1/2
Δ=(-2)^2-4(2m+1)(3m-3)
=4-4(6m^2-6m+3m-3)
=4-4(6m^2-3m-3)
=4-24m^2+12m+12
=-24m^2+12m+16
Để BPT vô nghiệm thì -24m^2+12m+16<=0 và 2m+1<0
=>m<-1/2 và \(\left[{}\begin{matrix}m< =\dfrac{3-\sqrt{105}}{2}\\m>=\dfrac{3+\sqrt{105}}{2}\end{matrix}\right.\)
=>\(m< =\dfrac{3-\sqrt{105}}{2}\)
m=1/2 \
nha bn
áp dụng phương trình vô nghiệm nha