cho đẳng thức x.(x+1).(x+2).(x+3).....(x+2017)=2017 .chứng tỏ x<1/2016!
GIÚP MÌNH VỚI CÁC BẠN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\cdot\cdot\cdot\left(x+2017\right)=2017\) \(\left(\text{Có }\left(2017-1\right)\text{ : }1+1+1=2018\right)\)
\(\text{Vì }\text{tích trên là tích của 2018 số hạng mà có kết quả = 2017 là số nguyên}>0\text{ }\Rightarrow\text{ }x>0\left(x\in Z\right)\)
\(\text{Mà }\frac{1}{2016!}< 1\)
\(\text{Và số nguyên bé nhất lớn hơn 0 là 1 }\)
\(\Rightarrow\text{ }x>\frac{1}{2016!}\)
\(\text{Mình nghĩ chắc là sai rồi ! Mình cũng đang bận !}\)
Lời giải:
Vì $x=9$ nên $x-9=0$
Ta có:
$F=(x^{2017}-9x^{2016})-(x^{2016}-9x^{2015})+(x^{2015}-9x^{2014})-....-(x^2-9x)+x-10$
$=x^{2016}(x-9)-x^{2015}(x-9)+x^{2014}(x-9)-....-x(x-9)+x-10$
$=x^{2016}.0-x^{2015}.0+x^{2014}.0-...-x.0+x-10$
$=x-10=9-10=-1$
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Ta thấy \(VT\ge0\forall x;y\) nên dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)Tha vào M ta được :
\(M=\left(1-1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)
1) đề sai
2) \(A=\left|x-2016\right|+\left|x-2017\right|=\left|x-2016\right|+\left|2017-x\right|\ge\left|x-2016+2017-x\right|=1\)
Dấu "=" xảy ra khi: \(2016\le x\le2017\)
a) \(\frac{x+2015}{5}+\frac{x+2015}{6}=\frac{x+2015}{7}+\frac{x+2015}{8}\)
\(\frac{x+2015}{5}+\frac{x+2015}{6}-\frac{x+2015}{7}-\frac{x+2015}{8}=0\)
\(\left(x+2015\right).\left(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\right)=0\)
vì \(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\ne0\)
\(\Rightarrow\)x + 2015 = 0
\(\Rightarrow\)x = -2015
b) Tương tự