1+4+9+...+9801=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(4/ 3* 9/ 8* 16/ 15* 25/ 24......9801/ 9800)
=(2* 2* 3* 3* 4* 4* 5* 5......*99* 99)/ (1* 3* 2* 4* 3* 5* 4* 6......98* 100)
=((2* 3* 4* 5*......*99)/ (1* 2* 3* 4*....* 98))/ ((2* 3* 4*...99)/ (3* 4* 5*.....*100))
=99* (1/ 50)
=99/ 50
đúng thì k cho mình bn nha (^.^)
\(A=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\cdot...\cdot\left(1-\dfrac{1}{9801}\right)\)
\(=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\left(1-\dfrac{1}{99}\right)\left(1+\dfrac{1}{99}\right)\)
\(=\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{98}{99}\right)\cdot\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{100}{99}\right)\)
\(=\dfrac{1}{99}\cdot\dfrac{100}{2}=\dfrac{50}{99}\)
Ta có : \(\dfrac{1}{4}\)= \(\dfrac{1}{2.2}\)> \(\dfrac{1}{2.3}\)
\(\dfrac{1}{9}\)= \(\dfrac{1}{3.3}\)> \(\dfrac{1}{3.4}\)
\(\dfrac{1}{16}\)=\(\dfrac{1}{4.4}\)> \(\dfrac{1}{4.5}\)
.......
\(\dfrac{1}{9801}\)= \(\dfrac{1}{99.99}\)> \(\dfrac{1}{99.100}\)
\(\dfrac{1}{10000}\)= \(\dfrac{1}{100.100}\)> \(\dfrac{1}{100.101}\)
\(\Rightarrow\) \(\dfrac{1}{4}\)+ \(\dfrac{1}{9}\)+ \(\dfrac{1}{16}\)+ ..... + \(\dfrac{1}{9801}\)+ \(\dfrac{1}{10000}\)> \(\dfrac{1}{2.3}\)+ \(\dfrac{1}{3.4}\)+ \(\dfrac{1}{4.5}\)+...+ \(\dfrac{1}{99.100}\)+\(\dfrac{1}{100.101}\)
= \(\dfrac{3-2}{2.3}\)+ \(\dfrac{4-3}{3.4}\)+ \(\dfrac{5-4}{4.5}\) +...+ \(\dfrac{100-99}{99.100}\)+ \(\dfrac{101-100}{100.101}\)
= \(\dfrac{3}{2.3}\)- \(\dfrac{2}{2.3}\) + \(\dfrac{4}{3.4}\)-\(\dfrac{3}{3.4}\)+ \(\dfrac{5}{4.5}\)-\(\dfrac{4}{4.5}\)+...+ \(\dfrac{100}{99.100}\)- \(\dfrac{99}{99.100}\)+ \(\dfrac{101}{100.101}\)-\(\dfrac{100}{100.101}\)
= \(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+....+ \(\dfrac{1}{99}\)-\(\dfrac{1}{100}\)+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\)
= \(\dfrac{1}{2}\)- \(\dfrac{1}{101}\) ; Mà \(\dfrac{1}{2}\)- \(\dfrac{1}{101}\)= \(\dfrac{99}{202}\)< \(\dfrac{1}{2}\)
\(\Rightarrow\) \(\dfrac{1}{2}\)< \(\dfrac{1}{4}\)+ \(\dfrac{1}{9}\)+ \(\dfrac{1}{16}\)+...+ \(\dfrac{1}{9801}\)+ \(\dfrac{1}{10000}\) (1)
Ta thấy khoảng cách của các số lần lượt là :
8 ; 16 ; 24 và chúng đều chia hết cho 8
Còn lại tự làm nhé
:))
Ta có 1+9+25+49+...+9801
=12+32+52+72+...+992
Ta có công thức tổng quát
12+32+52+...+(2n-1)2=\(\frac{n\left(4n^2-1\right)}{3}\)
Ta có 99=2x50-1
=>12+32+52+...+992=\(\frac{50.\left(4.50^2-1\right)}{3}=166650\)
Từ đề bài suy ra: A=3/4 x 8/9 x ...x 9800/9801 x 9999/10000
=>A=<1x3/2x2> x <2x4/3x3> x ... x <99x101/100x100>
=>A=(1x2x...x99)/(2x3x...x100) x (3x4x...x101)/(2x3x...x100)
=>A=1/100 x 101/2 = 101/200
so tiep theo la96059601
quy luat; số lien sau bằng số truoc bình phương