K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

Bài 1 :

Lý luận chung cho cả 2 câu a) và b) :

Vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0, mà tổng của chúng lại bằng 0

a) \(\Rightarrow\hept{\begin{cases}x-2y=0\\y-1=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

b) \(\Rightarrow\hept{\begin{cases}x-3=0\\x-2y-5=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)

6 tháng 2 2019

Ta có 
25 - y^2 = 8(x-2009)^2 
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0 
Mặt khác do 
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn 
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe) 
Do vậy chỉ tồn tại các giá trị sau 
y^2 = 1, y^2 = 9, y^2 = 25 
y^2 = 1; (x-2009)^2 = 3 (loại) 
y^2 = 9; (x-2009)^2 = 2 (loại) 
y^2 = 25; (x-2009)^2 = 0; x = 2009 
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5) 

7 tháng 2 2019

Trần Việt Anh cop gi ma ngu the :( cop xong ghi nguon vào ho to :))

\(25-y^2=8\left(x-2009\right)^2\)

\(\Leftrightarrow\frac{\left(x-2009\right)^2}{\left(\frac{5}{2\sqrt{2}}\right)^2}+\frac{\left(y-0\right)^2}{5^2}=0\)

\(\Rightarrow x,y\in\left(2009;5\right)\)

25 tháng 6 2019

câu hỏi hay chắc cần dùng đến IQ😀

26 tháng 6 2019

Ta có: \(2^6< 2^6+2^x+2^{3y}=A^2< 10000\)

=> \(8^2< 2^6+2^x+2^{3y}=A^2< 100^2\)

Vì A thuộc N.

Xét trường hợp: \(2^6+2^x+2^{3y}=9^2\)

=> \(2^x+2^{3y}=17\)là số lẻ

Do x, y thuộc N nên xảy  ra hai trường hợp hoặc là x=0, hoặc là y=0

+) Với x=0

ta có: \(1+2^{3y}=17\Leftrightarrow2^{3y}=16=2^4\Leftrightarrow3y=4\Leftrightarrow y=\frac{4}{3}\)( loại vì y là số tự nhiên)

+) Với y=0

ta có: \(2^x+1=17\Leftrightarrow2^x=16=2^4\Leftrightarrow x=4\)(tm)

Khi đó x+y=4

Mà đề bài bảo tìm giá trị nhỏ nhất của x+y, x, y thuộc N

Xét các trường hợp : 

+) y=0, x<4 loại

+) y=1, x<3 loại

+) y=2, x=0 => \(2^6+2^0+2^6=129\)( loại vì ko p là số chính phương)

 +) y=2, x=1 => \(2^6+2+2^6=130\)(loại)

 +) y=3, x=0 => \(2^6+2^0+2^9=577\) ( loại)

Vậy giá trị nhỏ nhất cần tìm là x+y=4

*với y=0 => để x+y nhỏ nhất <=> x nhỏ nhất => A^2 nhỏ nhất
mà A^2= 65+ 2^x
=> A^2 lẻ 
=> A^2= 81 => 2^x=16 => x=4 
khi đó x+y=4
*với x=0, lập luận tương tự => A^2= 65+ 8^y
+, A^2=81 => 8^y=16 => ko có y...
+, A^2=121 => 8^y=56 => ko có
+, A^2=169 => 8^y=104 => ko có...
(đến đây ko xét A^2 nữa vì nếu thỏa mãn thì x+y nhỏ nhất cũng =4)
+, với y khác 0 => A^2 chẵn mặt khác 2^x < 2^3y với x;y khác 0 và x+y<4 
=> để x+y nhỏ nhất <=> x nhỏ nhất và y lớn nhất 
tức y thuộc {1;2} và x thuộc {0;1}
=> 64<A^2 < 64+64+2=130
=> A^2=100 => 2^x+8^y= 36 => y=1 => 2^x=28 => loại
vậy...

28 tháng 6 2019

Câu hỏi của Trần Đại Nghĩa - Toán lớp 6 - Học toán với OnlineMath

Tham khảo bài của cô Chi nhé

15 tháng 11 2017

Tìm x y nguyên dương biết 2^x + 2^y = 2^(x + 1),2^x + 2^y = 2^(x + 1),Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

CHÚC BẠN HỌC TỐT !!!

27 tháng 12 2020

hình như bạn "OoO_TNT_OoO'' sai đề thì phải