Chứng minh rằng không có 6 số tự nhiên liên tiếp nào có chia thành 2 nhóm mà tích các hạng tử trong mỗi nhóm bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 6 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ; a + 5 ( a thuộc N )
Ta có :
a < a + 3 ; a + 1 < a + 4 ; a + 2 < a + 5
=> a . ( a + 1 ) . ( a + 2 ) < ( a + 3 ) . ( a + 4 ) . ( a + 5 )
=> Đpcm
Để chứng minh rằng luôn chọn được từ mỗi nhóm một số sao cho hai số được chọn có ít nhất 1 chữ số giống nhau, ta sẽ sử dụng nguyên lý "Ngăn chặn trực tiếp" (Pigeonhole principle).
Giả sử chúng ta chia các số từ 1 đến n thành hai nhóm tùy ý, mỗi nhóm chứa một nửa số. Vì n lớn hơn hoặc bằng 19, chúng ta có ít nhất 10 số trong mỗi nhóm.
Xét các chữ số hàng đơn vị của các số từ 1 đến n. Chúng ta có 10 chữ số hàng đơn vị khác nhau từ 0 đến 9. Vì vậy, trong mỗi nhóm, chắc chắn sẽ có ít nhất một số có chữ số hàng đơn vị giống nhau.
Do đó, luôn chọn được từ mỗi nhóm một số sao cho hai số được chọn có ít nhất 1 chữ số giống nhau.
Tuy nhiên, bài toán không đúng với n = 18. Khi n = 18, chúng ta có thể chia các số từ 1 đến 18 thành hai nhóm sao cho mỗi nhóm không có số nào có chữ số hàng đơn vị giống nhau. Ví dụ: nhóm 1 chứa các số 1, 2, 3, 4, 5, 6, 7, 8, 9 và nhóm 2 chứa các số 10, 11, 12, 13, 14, 15, 16, 17, 18.
Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư
Nên hiệu của chúng chia hết cho 13
Gọi số có 6 chữ số chia hết cho 13 là abcdeg (có gạch trên đầu) thì abc-deg chia hết cho 13
Ta có: abcdeg + (abc-deg)
= abcdeg + abc-deg
= 1000.abc + deg + abc - deg
= (1000+1).abc + (deg-deg)
= 1001.abc + 0
= 1001.abc
Vì 1001 chia hết cho 13 nên 1001.abc cũng chia hết cho 13
=> abcdeg + (abc-deg) chia hết cho 13
Mà abc-deg chia hết cho 13
Nên abcdeg chia hết cho 13
Vây trong 14 số đó tồn tại 2 số mà khi viết liên nhau thì tạo thành số có 6 chữ số chia hết cho 13
Khi chia 8 số tự nhiên cho 7 thì mỗi số sẽ nhận 1 giá trị dư thuộc {1; 2; 3; 4; 5; 6}
Như vậy sẽ có 2 số khi chia có 7 có cùng số dư. Giả sử có 2 số A>B khi chia cho 7 có cùng số dư là a ta có
A=7m+a; B=7n+a => A-B = 7(m-n) chia hết cho 7
=> Trong 8 số có 3 chữ số, giả sử abc > def có cùng số dư => abc - def chia hết cho 7 theo cm ở trên. Khi viết liền nhau
abcdef = 1000.abc + def = 1001.abc - abc + def = 1001.abc - (abc - def)
=> 1001 chia hết cho 7 và abc - def chia hết cho 7 => abcdef chia hết cho 7 (dpcm)
HT
Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư
Nên hiệu của chúng chia hết cho 13
Gọi số có 6 chữ số chia hết cho 13 là abcdeg (có gạch trên đầu) thì abc-deg chia hết cho 13
Ta có: abcdeg + (abc-deg)
= abcdeg + abc-deg
= 1000.abc + deg + abc - deg
= (1000+1).abc + (deg-deg)
= 1001.abc + 0
= 1001.abc
Vì 1001 chia hết cho 13 nên 1001.abc cũng chia hết cho 13
=> abcdeg + (abc-deg) chia hết cho 13
Mà abc-deg chia hết cho 13
Nên abcdeg chia hết cho 13
Vây trong 14 số đó tồn tại 2 số mà khi viết liên nhau thì tạo thành số có 6 chữ số chia hết cho 13
chuc ban hoc tot nha -_-