K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2018

\(\sqrt{x+2012}=2012-x^2\)

Bình phương hai vế ta được : 

\(x+2012=x^4-4024x^2+2012^2\)

<=> \(x^4-4024x^2-x+2012.2011=0\)

<=> \(\left(x^2-x-2012\right)\left(x^2+x-2011\right)=0\)

Bạn lớp 9 nên chắc học công thức nghiệm rồi nhỉ, tự giải tiếp nha :D

NV
13 tháng 12 2020

Đặt \(\sqrt{x^2+2012}=t>0\Rightarrow2012=t^2-x^2\)

Pt trở thành:

\(x^4+t=t^2-x^2\)

\(\Leftrightarrow x^4-t^2+x^2+t=0\)

\(\Leftrightarrow\left(x^2+t\right)\left(x^2-t+1\right)=0\)

\(\Leftrightarrow x^2+1=t\)

\(\Leftrightarrow x^2+1=\sqrt{x^2+2012}\)

\(\Leftrightarrow x^4+2x^2+1=x^2+2012\)

\(\Leftrightarrow x^4+x^2-2011=0\)

\(\Leftrightarrow x=\pm\sqrt{\dfrac{-1+\sqrt{8045}}{2}}\)

12 tháng 12 2017

\(x^4+\sqrt{x^2+2012}=2012.\)

\(\Leftrightarrow x^4=-\sqrt{x^2+2012}+2012.\)

\(\Leftrightarrow x^4+x^2+\frac{1}{4}=x^2+2012-\sqrt{x^2+2012}+\frac{1}{4}.\)

\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\left(\sqrt{x^2+2012}-\frac{1}{2}\right)^2.\)

Đến đây chia 2 TH ra là ok

12 tháng 12 2017

thank nhé

28 tháng 3 2019

a. giá trị nhỏ nhất của B=3 khi và chỉ khi x=y=1006

20 tháng 1 2019

\(a)\) Có \(2012=x+y\ge2\sqrt{xy}\)\(\Leftrightarrow\)\(xy\le1006^2\)

\(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{x^2+2xy+y^2}+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\)

\(\le2+\frac{4.1006^2}{2012^2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)

\(b)\) \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\ge\left[2+2012\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\ge\left(2+\frac{2012.4}{x+y}\right)^2\)

\(=\left(2+\frac{2012.4}{2012}\right)^2=36\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)

... 

20 tháng 1 2019

cảm ơn bạn nhiều

12 tháng 3 2017

ta có ; A=((x+2012)/x)^2 + ((y+2012)/y)^2

  hay A  =((x+x+y)/x)^2+((y+x+y)/x)^2

            =((2x+y)/x)^2 + ((2x+y)/x)^2

            =(2+y/x)^2 + (2+x/y)^2

đặt x/y=k ta có ;

A=(2+k)^2 + (2+1/k)^2

  =4+4k+k^2+4+4/k+1/k^2 

   \(\ge\)\(2\sqrt{4k.\frac{1}{4k}}\)+\(2\sqrt{k^2.\frac{1}{k^2}}\)\(+8\)(\(BAT\)\(DANG\)\(THUC\)\(COSI\))

   \(=\)\(2\sqrt{1}+2\sqrt{16}+8=2+8+8=18\)

\(_{ }\)vậy max A = 18

3 tháng 10 2019

1

Tham khảo:

loading...