Tìm x>0 biết: \(x^2+\sqrt{x+2012}=2012\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x^2+2012}=t>0\Rightarrow2012=t^2-x^2\)
Pt trở thành:
\(x^4+t=t^2-x^2\)
\(\Leftrightarrow x^4-t^2+x^2+t=0\)
\(\Leftrightarrow\left(x^2+t\right)\left(x^2-t+1\right)=0\)
\(\Leftrightarrow x^2+1=t\)
\(\Leftrightarrow x^2+1=\sqrt{x^2+2012}\)
\(\Leftrightarrow x^4+2x^2+1=x^2+2012\)
\(\Leftrightarrow x^4+x^2-2011=0\)
\(\Leftrightarrow x=\pm\sqrt{\dfrac{-1+\sqrt{8045}}{2}}\)
\(x^4+\sqrt{x^2+2012}=2012.\)
\(\Leftrightarrow x^4=-\sqrt{x^2+2012}+2012.\)
\(\Leftrightarrow x^4+x^2+\frac{1}{4}=x^2+2012-\sqrt{x^2+2012}+\frac{1}{4}.\)
\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\left(\sqrt{x^2+2012}-\frac{1}{2}\right)^2.\)
Đến đây chia 2 TH ra là ok
\(a)\) Có \(2012=x+y\ge2\sqrt{xy}\)\(\Leftrightarrow\)\(xy\le1006^2\)
\(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{x^2+2xy+y^2}+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\)
\(\le2+\frac{4.1006^2}{2012^2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)
\(b)\) \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\ge\left[2+2012\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\ge\left(2+\frac{2012.4}{x+y}\right)^2\)
\(=\left(2+\frac{2012.4}{2012}\right)^2=36\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)
...
ta có ; A=((x+2012)/x)^2 + ((y+2012)/y)^2
hay A =((x+x+y)/x)^2+((y+x+y)/x)^2
=((2x+y)/x)^2 + ((2x+y)/x)^2
=(2+y/x)^2 + (2+x/y)^2
đặt x/y=k ta có ;
A=(2+k)^2 + (2+1/k)^2
=4+4k+k^2+4+4/k+1/k^2
\(\ge\)\(2\sqrt{4k.\frac{1}{4k}}\)+\(2\sqrt{k^2.\frac{1}{k^2}}\)\(+8\)(\(BAT\)\(DANG\)\(THUC\)\(COSI\))
\(=\)\(2\sqrt{1}+2\sqrt{16}+8=2+8+8=18\)
\(_{ }\)vậy max A = 18
\(\sqrt{x+2012}=2012-x^2\)
Bình phương hai vế ta được :
\(x+2012=x^4-4024x^2+2012^2\)
<=> \(x^4-4024x^2-x+2012.2011=0\)
<=> \(\left(x^2-x-2012\right)\left(x^2+x-2011\right)=0\)
Bạn lớp 9 nên chắc học công thức nghiệm rồi nhỉ, tự giải tiếp nha :D