cho (x^2-y^2+1)^2+4^2y^2-x^2-y^2=0.Tìm gttnn,gtln cua pt x^2+y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
\(\left(x+y\right)^2+6\left(x+y\right)+9+y^2-3=0\)
\(\Leftrightarrow\left(x+y+3\right)^2+y^2-3=0\Leftrightarrow\left(x+y+3\right)^2=3-y^2\le3\)
\(\Rightarrow\left(x+y+3\right)^2\le3\Rightarrow-\sqrt{3}\le x+y+3\le\sqrt{3}\)
\(\Rightarrow-3-\sqrt{3}\le x+y\le-3+\sqrt{3}\)
\(\Rightarrow\left\{{}\begin{matrix}S_{max}=-3+\sqrt{3}\\S_{min}=-3-\sqrt{3}\end{matrix}\right.\)
Từ \(3-y^2\le3\) cho thấy dấu "=" cả 2 trường hợp đều xảy ra tại \(y=0\) còn \(S_{max}\) tại \(x=-3+\sqrt{3};S_{min}\Rightarrow x=-3-\sqrt{3}\)
Nước ta có nhiều tấm gương vượt lên số phận, học tập thành công (như anh Nguyễn ngọc kí, ...)Lấy nhan đề là ...
Tả một người thân (ông, bà, cha, mẹ, anh, chị, em... của em) - Loigiaihay