K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

\(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c+b+c+d+c+d+a+d+a+b}{a+b+c+d}\)(Tính chất dãy các tỉ số bằng nhau)\(=\frac{3\left(a+b+c+d\right)}{\left(a+b+c+d\right)}=3\)

13 tháng 8 2016

\(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}\)

=\(\frac{a+b+c+d+a+b+c+d+a+b+c+d}{a+b+c+d}\)

=\(\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)

NV
13 tháng 11 2021

\(\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}\)

TH1: \(a+b+c+d=0\)

\(\Rightarrow\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{-c}{c}=-1\)

TH2: \(a+b+c+d\ne0\)

\(\Rightarrow\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

31 tháng 10 2019

Áp dụng TC của dãy tỉ số bằng nhau ,ta có :

\(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c+b+c+d+c+d+a+d+a+b}{d+a+b+c}\)

\(=\frac{3a+3b+3c+3d}{a+b+c+d}=3\)

Vậy.....................

Tui nghĩ zậy , ko hiểu đề cho lém!

31 tháng 10 2019

https://olm.vn/hoi-dap/detail/227779138187.html bạn tham khảo

AH
Akai Haruma
Giáo viên
1 tháng 11 2019

Lời giải:

Nếu $a+b+c+d=0$ thì:

$a+b+c=-d; b+c+d=-a; c+d+a=-b; d+a+b=-c$

$\Rightarrow \frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=-1$

Nếu $a+b+c+d\neq 0$ thì:

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c+b+c+d+c+d+a+d+a+b}{d+a+b+c}=\frac{3(a+b+c+d)}{a+b+c+d}=3\)

Vậy giá trị của các tỉ số trên có thể bằng $-1$ hoặc $3$

AH
Akai Haruma
Giáo viên
26 tháng 6 2023

Lời giải:

Ta có:

$\frac{a}{b}=\frac{c}{d}=\frac{4c}{4d}=\frac{a+4c}{b+4d}$ (theo TCDTSBN)

$\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}$ (theo TCDTSBN)

$\Rightarrow \frac{a+4c}{b+4d}=\frac{2a-3c}{2b-3d}$

$\Rightarrow (a+4c)(2b-3d)=(2a-3c)(b+4d)$ (đpcm)