K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

Bạn viết đề sai rồi, mình sửa đề nhé, bài này ngắn lắm =((

\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)

\(=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{3}{2}\left(1-\frac{1}{101}\right)=\frac{3}{2}.\frac{100}{101}=\frac{150}{101}\)(rút gọn phân số)

22 tháng 3 2018

Ta có : 

\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\) ( sai đề rồi ) 

\(=\)\(\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(=\)\(\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\)\(\frac{3}{2}\left(1-\frac{1}{101}\right)\)

\(=\)\(\frac{3}{2}.\frac{100}{101}\)

\(=\)\(\frac{150}{101}\)

Vậy \(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}=\frac{150}{101}\)

Chúc bạn học tốt ~ 

22 tháng 6 2017

n=\(\frac{2}{3}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

n=\(\frac{2}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

n=\(\frac{2}{3}\left(1-\frac{1}{99}\right)\)

n=\(\frac{2}{3}\times\frac{98}{99}\)

n=\(\frac{196}{297}\)

22 tháng 6 2017

Câu \(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{2}{99.100}\)Bạn viết \(\frac{3}{99.100}=\frac{2}{99.100}\)mik sửa lại nhé. 

\(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.100}\)

\(M=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{100-99}{99.100}\)

\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{100}\right)\)

\(M=\frac{3}{2}.\frac{99}{100}=\frac{297}{200}\)

\(N=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{97.99}\)

\(N=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+....+\frac{99-97}{97.99}\)

\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)\)

\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)\)

\(\Rightarrow N=\frac{3}{2}.\frac{98}{99}=\frac{49}{33}\)

Ta thấy : \(\frac{297}{200}>\frac{49}{33}\Rightarrow M>N\)

24 tháng 9 2017

đây mà là toán lớp 1 à

24 tháng 9 2017

 toán lớp 1 à nói đi lớp mấy

6 tháng 8 2016

\(\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+\frac{4}{5\cdot7\cdot9}+\frac{4}{7\cdot9\cdot11}+\frac{4}{9\cdot11\cdot13}\)

\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)

\(=\frac{1}{1.3}-\frac{1}{11.13}\)

\(=\frac{1}{3}-\frac{1}{143}\)

\(=\frac{140}{429}\)

20 tháng 8 2016

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{99.100}\\ =\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+.........+\left(\frac{1}{99}-\frac{1}{100}\right)\\ =\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+......+\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\\ =\frac{49}{100}\)

20 tháng 8 2016

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+...+\frac{1}{99}.\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

21 tháng 4 2016

Ta có: 2/1.3 = 1/1 - 1/3

          2/3.5 = 1/3 - 1/5

\(\Rightarrow\) 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101

=   1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 - 1/100

=   1 - 1/100

=    99/100

21 tháng 4 2016

tích trên sẽ = 1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/100

=1-1/100 =99/100

bạn nhớ rằng  k/n.(n+k) sẽ = 1/n-1/n+k

11 tháng 5 2017

Bài 1 :
a) =) \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)\(1-\frac{1}{101}=\frac{100}{101}\)
b) =) \(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
=) \(\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)( theo phần a)
Bài 2 :
-Gọi d là UCLN \(\left(2n+1;3n+2\right)\)( d \(\in N\)* )
(=) \(2n+1⋮d\left(=\right)3.\left(2n+1\right)⋮d\)
(=) \(6n+3⋮d\)
và \(3n+2⋮d\left(=\right)2.\left(3n+2\right)⋮d\)
(=) \(6n+4⋮d\)
(=) \(\left(6n+4\right)-\left(6n+3\right)⋮d\)
(=) \(6n+4-6n-3⋮d\)
(=) \(1⋮d\left(=\right)d\in UC\left(1\right)\)(=) d = { 1;-1}
Vì d là UCLN\(\left(2n+1;3n+2\right)\)(=) \(d=1\)(=) \(\frac{2n+1}{3n+2}\)là phân số tối giản ( đpcm )
Bài 3 :
-Để A \(\in Z\)(=) \(n+2⋮n-5\)
Vì \(n-5⋮n-5\)
(=) \(\left(n+2\right)-\left(n-5\right)⋮n-5\)
(=) \(n+2-n+5⋮n-5\)
(=) \(7⋮n-5\)(=) \(n-5\in UC\left(7\right)\)= { 1;-1;7;-7}
(=) n = { 6;4;12;-2}
Vậy n = {6;4;12;-2} thì A \(\in Z\)
Bài 4:
A = \(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
\(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{111111}\right)\)
\(10101.\left(\frac{1}{111111}+\frac{5}{222222}\right)\)\(10101.\left(\frac{2}{222222}+\frac{5}{222222}\right)\)
\(10101.\frac{7}{222222}\)( không cần rút gọn \(\frac{7}{222222}\))
\(\frac{7}{22}\)