K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

Ta có:

\(Q\left(1\right)=a+b=2\)

\(Q\left(3\right)=3a+b=8\)

Suy ra: \(Q\left(3\right)-Q\left(1\right)=3a+b-a-b=2a=6\)

Suy ra: a=3

Suy ra: b=-1 

6 tháng 12 2017

Giả sử hai đa thức có nghiệm chung \(x_0\), ta thấy cả hai đa thức đều không nhận x = 0 là nghiêm nên \(x_0\ne0\) .

Ta có đồng thời:

   \(\hept{\begin{cases}x_0^4+ax_0^2+1=0\\x_0^3+ax+1=0\end{cases}}\)

Nhân cả hai vế của đẳng thức thứ hai với \(x_0\) rồi lấy đẳng thức thứ nhất trừ đi đẳng thức thứ hai ta được:

\(\left(x_0^4+ax_0^2+1\right)-x_0\left(x_0^3+ax_0+1\right)=0\)

=> \(1-x_0=0\)

=> \(x_0=1\)

Thức là nếu hai đa thức có nghiệm chung \(x_0\) thì nghiệm chung đó chỉ có thể bằng 1.

Để  x=1 là nghiệm chung của hai đa thức thì: \(1^4+a.1^2+1=0\) => a = -2

17 tháng 8 2020

a) Đặt \(A\left(x\right)=x^4-9x^3+ax^2+x+b\)

Vì \(A\left(x\right)\) chia hết cho \(x^2-x-2\) nên :

\(A\left(x\right)=\left(x^2-x-2\right).Q\left(x\right)\)

\(\Leftrightarrow A\left(x\right)=\left(x-2\right)\left(x+1\right)Q\left(x\right)\) (*)

Lần lượt thay \(x=2,x=-1\) vào (*) ta có :

\(\hept{\begin{cases}2^4-9.2^3+a.2^2+2+b=0\\\left(-1\right)^4-9.\left(-1\right)^3+\left(-1\right)^2.a+\left(-1\right)+b=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4a+b=54\\a+b=-9\end{cases}\Leftrightarrow}\hept{\begin{cases}a=21\\b=-30\end{cases}}\)

b) Đặt \(B\left(x\right)=x^3+ax+b\)

Vì \(B\left(x\right):\left(x+1\right)\) dư 7 nên : \(B\left(x\right)=\left(x+1\right).H\left(x\right)+7\)

Thay \(x=-1\) vào thì ta có : \(\left(-1\right)^3+a.\left(-1\right)+b=7\Leftrightarrow b-a=8\) (1)

Vì \(B\left(x\right):\left(x-3\right)\) dư -5 nên : \(B\left(x\right)=\left(x-3\right).G\left(x\right)-5\)

Thay \(x=3\) vào thì ta có : \(3^3+3a+b=-5\Leftrightarrow3a+b=-32\) (2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=-10\\b=-2\end{cases}}\)

c) Đặt \(C\left(x\right)=ax^3+bx^2+c\)

Vì \(C\left(x\right)⋮x+2\Rightarrow C\left(x\right)=\left(x+2\right).Y\left(x\right)\)

Với \(x=-2\) thì \(\left(-2\right)^3.a+\left(-2\right)^2.b+c=0\)

\(\Leftrightarrow-8a+4b+c=0\) (3)

Lại có : \(C\left(x\right):\left(x^2-1\right)\) thì dư \(x+5\) nên :

\(C\left(x\right)=\left(x^2-1\right).K\left(x\right)+\left(x+5\right)=\left(x-1\right)\left(x+1\right).K\left(x\right)+x+5\)

Với \(x=1\) thì ta có : \(a+b+c=1+5=6\) (4)

Với \(x=-1\) thì ta có : \(-a+b+c=-1+5=4\) (5)

Từ (3) ; (4) và (5) suy ra : \(\hept{\begin{cases}-8a+4b+c=0\\a+b+c=6\\-a+b+c=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}}\)

11 tháng 4 2016

Q(0)=1 nên a.02+b.0+c=1 nên c=1

Q(1)=3 nên a+b+c=3 nên a+b= 2(vì c=1)       (1)

Q(-1)=2 nên a-b+c=2 nên a-b=1(vì c=1)           (2)

từ (1) và (2) nên a=1,5 và b=0,5

17 tháng 5 2018

Đa thức  f(x)  có 2 nghiệm là x = 1;  x = -1  nên ta có:

\(f\left(1\right)=1+a+b-2=0\)             \(\Leftrightarrow\)\(a+b=1\)

\(f\left(-1\right)=1+a-b-2=0\)  \(\Leftrightarrow\) \(a-b=1\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a=1\\b=0\end{cases}}\)

Vậy...

14 tháng 8 2017

1. Thay x = -2 vào \(f\left(x\right)\), ta có:

\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0

=> -8 + 8 - 2a + 1 = 0

=> -2a +1 = 0

=> -2a = -1

=> a = \(\frac{1}{2}\)

Vậy a = \(\frac{1}{2}\)

2. * Thay x = 1 vào \(f\left(x\right)\), ta có:

1+ 1.a + b = 1 + a + b = 0    ( 1)

* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:

22 + 2.a + b =  4 + 2a + b =  0  ( 2)

* Lấy    (2 )   -   ( 1)  , ta có:

 ( 4 + 2a + b ) - ( 1 + a + b ) = 3  + a 

=> 3 + a = 0

=> a = -3

* 1 + a + b = 0 

=> 1 - 3 + b = 0

=> b = -1 + 3 = -2

Vậy a= -3  và b= -2

8 tháng 4 2019

a = -3

b = -2

Hok tốt