Cho Q (x) = ax+b
Hãy xác định Q (x) biết Q (1) = 2 và Q (3) = 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử hai đa thức có nghiệm chung \(x_0\), ta thấy cả hai đa thức đều không nhận x = 0 là nghiêm nên \(x_0\ne0\) .
Ta có đồng thời:
\(\hept{\begin{cases}x_0^4+ax_0^2+1=0\\x_0^3+ax+1=0\end{cases}}\)
Nhân cả hai vế của đẳng thức thứ hai với \(x_0\) rồi lấy đẳng thức thứ nhất trừ đi đẳng thức thứ hai ta được:
\(\left(x_0^4+ax_0^2+1\right)-x_0\left(x_0^3+ax_0+1\right)=0\)
=> \(1-x_0=0\)
=> \(x_0=1\)
Thức là nếu hai đa thức có nghiệm chung \(x_0\) thì nghiệm chung đó chỉ có thể bằng 1.
Để x=1 là nghiệm chung của hai đa thức thì: \(1^4+a.1^2+1=0\) => a = -2
a) Đặt \(A\left(x\right)=x^4-9x^3+ax^2+x+b\)
Vì \(A\left(x\right)\) chia hết cho \(x^2-x-2\) nên :
\(A\left(x\right)=\left(x^2-x-2\right).Q\left(x\right)\)
\(\Leftrightarrow A\left(x\right)=\left(x-2\right)\left(x+1\right)Q\left(x\right)\) (*)
Lần lượt thay \(x=2,x=-1\) vào (*) ta có :
\(\hept{\begin{cases}2^4-9.2^3+a.2^2+2+b=0\\\left(-1\right)^4-9.\left(-1\right)^3+\left(-1\right)^2.a+\left(-1\right)+b=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4a+b=54\\a+b=-9\end{cases}\Leftrightarrow}\hept{\begin{cases}a=21\\b=-30\end{cases}}\)
b) Đặt \(B\left(x\right)=x^3+ax+b\)
Vì \(B\left(x\right):\left(x+1\right)\) dư 7 nên : \(B\left(x\right)=\left(x+1\right).H\left(x\right)+7\)
Thay \(x=-1\) vào thì ta có : \(\left(-1\right)^3+a.\left(-1\right)+b=7\Leftrightarrow b-a=8\) (1)
Vì \(B\left(x\right):\left(x-3\right)\) dư -5 nên : \(B\left(x\right)=\left(x-3\right).G\left(x\right)-5\)
Thay \(x=3\) vào thì ta có : \(3^3+3a+b=-5\Leftrightarrow3a+b=-32\) (2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=-10\\b=-2\end{cases}}\)
c) Đặt \(C\left(x\right)=ax^3+bx^2+c\)
Vì \(C\left(x\right)⋮x+2\Rightarrow C\left(x\right)=\left(x+2\right).Y\left(x\right)\)
Với \(x=-2\) thì \(\left(-2\right)^3.a+\left(-2\right)^2.b+c=0\)
\(\Leftrightarrow-8a+4b+c=0\) (3)
Lại có : \(C\left(x\right):\left(x^2-1\right)\) thì dư \(x+5\) nên :
\(C\left(x\right)=\left(x^2-1\right).K\left(x\right)+\left(x+5\right)=\left(x-1\right)\left(x+1\right).K\left(x\right)+x+5\)
Với \(x=1\) thì ta có : \(a+b+c=1+5=6\) (4)
Với \(x=-1\) thì ta có : \(-a+b+c=-1+5=4\) (5)
Từ (3) ; (4) và (5) suy ra : \(\hept{\begin{cases}-8a+4b+c=0\\a+b+c=6\\-a+b+c=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}}\)
Đa thức f(x) có 2 nghiệm là x = 1; x = -1 nên ta có:
\(f\left(1\right)=1+a+b-2=0\) \(\Leftrightarrow\)\(a+b=1\)
\(f\left(-1\right)=1+a-b-2=0\) \(\Leftrightarrow\) \(a-b=1\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a=1\\b=0\end{cases}}\)
Vậy...
1. Thay x = -2 vào \(f\left(x\right)\), ta có:
\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0
=> -8 + 8 - 2a + 1 = 0
=> -2a +1 = 0
=> -2a = -1
=> a = \(\frac{1}{2}\)
Vậy a = \(\frac{1}{2}\)
2. * Thay x = 1 vào \(f\left(x\right)\), ta có:
12 + 1.a + b = 1 + a + b = 0 ( 1)
* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:
22 + 2.a + b = 4 + 2a + b = 0 ( 2)
* Lấy (2 ) - ( 1) , ta có:
( 4 + 2a + b ) - ( 1 + a + b ) = 3 + a
=> 3 + a = 0
=> a = -3
* 1 + a + b = 0
=> 1 - 3 + b = 0
=> b = -1 + 3 = -2
Vậy a= -3 và b= -2
Ta có:
\(Q\left(1\right)=a+b=2\)
\(Q\left(3\right)=3a+b=8\)
Suy ra: \(Q\left(3\right)-Q\left(1\right)=3a+b-a-b=2a=6\)
Suy ra: a=3
Suy ra: b=-1