Cho p là số tự nhiên lớn hơn 3. chứng minh p^2+12 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố lớn hơn 3
=> P không chia hết cho 3
=>P^2 không chia hết cho 3
=>P^2 có dạng 3k+1
=>P^2+2012=3k+1+2012=3m+2013 chia hết cho 3 => hợp số
học tốt :)
Đề bài: Cho P là số nguyên tố lớn hơn 3 chứng minh rằng : \(p^2+2012\) là hợp số
Vì p là số nguyên tố lớn hơn 3 nên p viết được dưới dạng \(3k+1\)hoặc \(3k+2\)
- Nếu \(p=3k+1\) thì \(p^2+2012=\left(3k+1\right)^2+2012=3k\left(3k+1\right)+3k+1+2012=9k^2+3k+3k+2013=9k^2+6k+2013\)
Có \(\hept{\begin{cases}9k^2⋮3\\6k⋮3\\2013⋮3\end{cases}\Rightarrow9k^2+6k+2013⋮3}\)
\(\Rightarrow p^2+2012⋮3\)
\(\Rightarrow p^2+2012\) là hợp số.
- Nếu \(p=3k+1\) thì \(p^2+2012=\left(3k+1\right)^2+2012=3k\left(3k+1\right)+3k+1+2012=9k^2+3k+3k+2013=9k^2+6k+2013\)
Có \(\hept{\begin{cases}9k^2⋮3\\6k⋮3\\2013⋮3\end{cases}\Rightarrow9k^2+6k+2013⋮3}\)
\(\Rightarrow p^2+2012⋮3\)
\(\Rightarrow p^2+2012\) là hợp số. (1)
- Nếu \(p=3k+2\) thì \(p^2+2012=\left(3k+2\right)^2+2012=3k\left(3k+2\right)+2\left(3k+2\right)+2012=9k^2+6k+6k+4+2012=9k^2+12k+2016\)
Có \(\hept{\begin{cases}9k^2⋮3\\12k⋮3\\2016⋮3\end{cases}\Rightarrow9k^2+6k+2016⋮3}\)
\(\Rightarrow p^2+2012⋮3\)
\(\Rightarrow p^2+2012\) là hợp số. (2)
Từ (1) và (2) suy ra
\(p^2+2012\) là hợp số.
Vây...
với n>2 => (n-1)(n+1) <>0
vì (n-1)*n*(n+1) luôn chia hết cho 3 (3 số tự nhiên liên tiếp)
n không chia hết cho 3 => (n-1) hoặc (n+1) phải chia hết cho 3
=> n^2-1=(n-1)(n+1) phải chia hết cho 3=>dpcm
với n>2 => (n-1)(n+1) <>0
vì (n-1)*n*(n+1) luôn chia hết cho 3 (3 số tự nhiên liên tiếp)
n không chia hết cho 3 => (n-1) hoặc (n+1) phải chia hết cho 3
=> n^2-1=(n-1)(n+1) phải chia hết cho 3=>dpcm
Giả sử p là số nguyên tố. Từ a^2.b^2=p(a^2+b^2)=>a^2+b^2chia hết cho p hoặc achia hết cho p và b chia hết cho p (1)
=> a^2.b^2 chia hết cho p^2 => p(a^2+b^2)chia hết cho p2 =>a2+b2 chia hết cho p (2). Từ (1) và (2) =>a chia hết cho p và b chia hết cho p.
Từ a\(\ge\)p , b\(\ge\)p => \(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{2}{p^2}=>\frac{1}{p}\le\frac{2}{p^2}=>p\le2\left(3\right)\)
Từ a> 2, b > 2 => \(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\Rightarrow p>2\left(4\right)\)
Từ (3), (4) => mâu thuẫn => p là hợp số.
đúng mình cái