CMR:\(\frac{a}{b}+\frac{b}{a}\ge2\forall\frac{a}{b}\in N\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta thấy:
\(x^4-2x^3+2x^2-2x+1=(x^4-2x^3+x^2)+(x^2-2x+1)\)
\(=(x^2-x)^2+(x-1)^2\geq 0, \forall x\in\mathbb{R}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} x^2-x=0\\ x-1=0\end{matrix}\right.\) hay $x=1$
b) Đề sai với $a=0,5; b=2,3; c=0,2$. Nếu đề bài của bạn giống bài dưới đây, tham khảo nó tại link sau:
Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến
Bài 1: Theo đề bài: \(VT=\left(a-1\right)+\frac{1}{\left(a-1\right)}+1\ge2\sqrt{\left(a-1\right).\frac{1}{a-1}}+1=2+1=3^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi \(\left(a-1\right)=\frac{1}{a-1}\Leftrightarrow a=2\)
Bài 2: \(BĐT\Leftrightarrow\left(a^2+2\right)^2\ge4\left(a^2+1\right)\)
\(\Leftrightarrow a^4+4a^2+4\ge4a^2+4\)
\(\Leftrightarrow a^4\ge0\) (đúng). Đẳng thức xảy ra khi a = 0
Bài 3: Hình như sai đề thì phải ạ. Nếu a = 1,5 ; b = 1 thì \(\frac{19}{10}=1,9< 3\)
Đề bài bạn ghi ko chính xác
Đề đúng có vẻ là \(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\)
b)Ta có: \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge2\left(đpcm\right)\)
\(a^5-a=a\left(a^4-1\right)\)
\(=a\left(a^2+1\right)\left(a^2-1\right)\)
\(=a\left(a^2+1\right)\left(a-1\right)\left(a+1\right)\)
\(=a\left(a^2-4+5\right)\left(a-1\right)\left(a+1\right)\)
\(=a\left(a^2-4\right)\left(a-1\right)\left(a+1\right)+5a\left(a+1\right)\left(a-1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a+1\right)\left(a-1\right)\)
Tích 5 số nguyên liên tiếp chia hết cho 5 nên \(a^5-a⋮5\)
Muốn viết tất cả các số tự nhiên từ 100 đến 999 phải dùng hết bao nhiên chữ số 5?
giải
ta có 100 chia hết cho 5
và số lớn nhất chia hết cho 5 trong dãy số này là:
995
vì cứ mỗi số chia hết cho 5 thì cách 5 đơn vị thì lại là một số chia hết cho 5
nên
từ 100-995 có số chữ số 5 là:
(995-100):5+1=180(số)
đáp số:180 số
đúng thì thanks mình nhé!
Bài 1:
a) Áp dụng BĐT Cô-si:
\(VT=a-1+\frac{1}{a-1}+1\ge2\sqrt{\frac{a-1}{a-1}}+1=2+1=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=2\).
b) BĐT \(\Leftrightarrow a^2+2\ge2\sqrt{a^2+1}\)
\(\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\)
\(\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) ( LĐ )
Dấu "=" xảy ra \(\Leftrightarrow a=0\).
Bài 2: tương tự 1b.
Bài 3:
Do \(a,b,c\) dương nên ta có các BĐT:
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Tương tự: \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng theo vế 3 BĐT:
\(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)( đpcm )
\(+\)\(a=b\Rightarrow\frac{a}{b}=\frac{b}{a}=1\Rightarrow\frac{a}{b}+\frac{b}{a}=2\)
\(a< b\Rightarrow b=a+m\Rightarrow\frac{a}{b}+\frac{b}{a}=\frac{a}{a+m}+\frac{a+m}{a}\)
\(=\frac{a}{a+m}+1+\frac{m}{a}>1+\left(\frac{a}{a+m}+\frac{a}{a+m}\right)=1+1=2\)
\(\Rightarrow\frac{a}{b}+\frac{b}{a}>2\)
\(a>b\)chứng minh tương tự như với\(a< b\)
Có\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\)
Mà \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
=>\(\frac{\left(a^2+b^2\right)}{ab}\ge2\)(đpcm)