Cho a,b,c khac 0 ,a+b+c=1
ab/c+1 + bc/a+1 + ac/b+1 <= 1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức cho hai số dương
\(\dfrac{1}{\left(a+b\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Xét \(c+1=c+a+b+c\)
\(\dfrac{ab}{c+1}\le\dfrac{ab}{4\left[\dfrac{1}{a+c}+\dfrac{1}{b+c}\right]}\)
Tương tự:
\(\dfrac{bc}{a+1}\le\dfrac{bc}{4\left[\dfrac{1}{a+c}+\dfrac{1}{b+a}\right]}\)
\(\dfrac{ca}{b+1}\le\dfrac{ac}{4\left[\dfrac{1}{a+b}+\dfrac{1}{c+b}\right]}\)
Cộng lại :
\(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\left[\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{bc}{a+c}+\dfrac{bc}{a+b}+\dfrac{ac}{a+b}+\dfrac{ac}{b+c}\right]\)
Rút gọn mẫu số
\(\Rightarrow\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\left(a+b+c\right)=\dfrac{1}{4}\)
Ta có: \(0\le a\le b\le1.\)
\(\Rightarrow\left\{{}\begin{matrix}a-1\le0\\b-1\le0\end{matrix}\right.\)
\(\Rightarrow\left(a-1\right).\left(b-1\right)\ge0\)
\(\Rightarrow ab-a-b+1\ge0.\)
\(\Rightarrow ab+1\ge0+a+b\)
\(\Rightarrow ab+1\ge a+b\)
\(\Rightarrow\frac{1}{ab+1}\le\frac{1}{a+b}.\)
\(\Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(c\ge0\right).\)
Mà \(\frac{c}{a+b}\le\frac{2c}{a+b+c}\left(c\ge0\right)\)
\(\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\left(1\right).\)
Chứng minh tương tự ta cũng có:
\(\frac{b}{ac+1}\le\frac{2b}{a+b+c}\left(2\right);\frac{a}{bc+1}\le\frac{2a}{a+b+c}\left(3\right).\)
Cộng theo vế \(\left(1\right);\left(2\right)và\left(3\right)\) ta được:
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)
\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}\)
\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2.\left(a+b+c\right)}{a+b+c}\)
\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\left(đpcm\right).\)
Chúc bạn học tốt!
Ta có : \(0\le a\le b\le1\Rightarrow\hept{\begin{cases}a-1\le0\\b-1\le0\end{cases}}\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\)
\(\Rightarrow ab+1\ge a+b\Rightarrow\frac{1}{ab+1}\le\frac{1}{a+b}\)
\(\Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(c\ge0\right)\)
Mà \(\frac{c}{a+b}\le\frac{2c}{a+b+c}\left(c\ge0\right)\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
CM tương tự ta cũng có : \(\hept{\begin{cases}\frac{b}{ac+1}\le\frac{2b}{a+b+c}\\\frac{a}{bc+1}\le\frac{2a}{a+b+c}\end{cases}}\)
Cộng vế với vế ta được :
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\) (ĐPCM)
Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)
Cho abc là số dương thỏa mãn 0<a<b<c<1
Chứng minh rằng \(\frac{a}{bc+1}\)+\(\frac{b}{ac+1}\)+\(\frac{c}{ab+1}\)<2
Từ giả thiết ta có:
(1-b) (1-c)>0 và 1 -(b+c)+bc>0 và bc+1>b+c và \(\frac{a}{bc+1}\)<\(\frac{a}{b+c}\)<\(\frac{a}{a+b}\)(1)
Tương tự ta cũng có :\(\frac{b}{ac+1}\)<\(\frac{b}{a+c}\)<\(\frac{b}{a+b}\)(2);\(\frac{c}{ab+1}\)<c<1(3)
Cộng (1),(2),(3) theo vế ta được :\(\frac{a}{bc+1}\)+\(\frac{b}{ac+1}\)+\(\frac{c}{ab+1}\)<\(\frac{a+b}{a+b}\)+1=2
Vậy \(\frac{a}{bc+1}\)+\(\frac{b}{ac+1}\)+\(\frac{c}{ab+1}\)<2
Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left(1-a\right)\left(1-b\right)\ge0\)
\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)
Tiếp tục chứng minh.
\(\hept{\begin{cases}1\ge c\\0\le a\le b\Leftrightarrow ab\ge0\end{cases}}\)
Cộng theo vế: \(2\left(ab+1\right)\ge a+b+c\)
Trở lại bài toán: \(\frac{c}{ab+1}=\frac{2c}{2\left(ab+1\right)}\le\frac{2c}{a+b+c}\)
Tương tự rồi cộng theo vế suy ra đpcm
Ta có: \(a\le1\Rightarrow a-1\le0\)
\(b\le1\Rightarrow b-1\le0\)
Ta có: \(\left(a-1\right)\left(b-1\right)\ge0\)( mới chứng minh ở trên đó )
\(\Rightarrow ab-a-b+1\ge0\Leftrightarrow ab+1\ge a+b\Leftrightarrow2ab+1\ge ab\ge a+b\)
\(\Rightarrow2ab+2\ge a+b+c\Leftrightarrow\frac{1}{2}ab+2\ge\frac{1}{a+b+c}+\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
Ta cũng chứng minh tương tự với \(\frac{b}{ac+1}\le\frac{2b}{a+b+c};\frac{a}{bc+1}\le\frac{2a}{a+b+c}\)
Từ đây bạn tự làm tiếp rồi suy ra đpcm nha