3( a + b - c)( b + c - a)( a + c - b). Ba số a; b; c có là độ dài 3 cạnh tam giác không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(a^2+b^2+c^2+29ab+bc+ca=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Rightarrow a=b=c\)
b/ \(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b\right)\)
\(=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)
c/ Không, vì \(a=b=c\ne\) thì \(a^3+b^3+c^3=3a^3=3abc\) vẫn đúng
a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=> a=b=c
Hiệu hai số ( C – B ) là:
( A + C ) – ( A + B ) = C – B = 203 – 150 = 53
Số C là:
( 163 + 53 ) : 2 = 108
Số A là
203 – 108 = 95
số B là
150 - 95 = 55
Đáp số : Số A là 95
Số B là 55
Số C là 108
Lời giải:
BĐT $\Leftrightarrow abc\geq (a+b-c)(b+c-a)(c+a-b)(*)$
Áp dụng BĐT AM-GM:
$(a+b-c)(b+c-a)\leq \left(\frac{a+b-c+b+c-a}{2}\right)^2=b^2$
$(b+c-a)(c+a-b)\leq \left(\frac{b+c-a+c+a-b}{2}\right)^2=c^2$
$(a+b-c)(a+c-b)\leq \left(\frac{a+b-c+a+c-b}{2}\right)^2=a^2$
Nhân theo vế 3 BĐT trên:
$[(a+b-c)(b+c-a)(c+a-b)]^2\geq (abc)^2$
$\Rightarrow abc\geq (a+b-c)(b+c-a)(c+a-b)$ (BĐT $(*)$ được cm)
Ta có đpcm.
\(3a=4b=6c\Rightarrow\dfrac{3a}{12}=\dfrac{4b}{12}=\dfrac{6c}{12}\\ \Rightarrow\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{2}=\dfrac{a+b-c}{4+3-2}=\dfrac{20}{5}=4\\ \Rightarrow\left\{{}\begin{matrix}a=16\\b=12\\c=8\end{matrix}\right.\)
Đề bài: Cho 3 số \(a+b+c=0\)..........
Vì \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Rightarrow A=a\left(a+b\right)\left(c+a\right)=a.\left(-c\right).\left(-b\right)=abc\)(1)
\(B=b\left(b+c\right)\left(a+b\right)=b.\left(-a\right).\left(-c\right)=abc\)(2)
\(C=c\left(c+a\right)\left(b+c\right)=c.\left(-b\right).\left(-a\right)=abc\)(3)
Từ (1) , (2) và (3) \(\Rightarrow A=B=C\)
3 số mà thêm d vô mần chi rứa:v
Ta có : \(a+b+c=0< =>\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
Thay vào các biểu thức A,B,C ta có :
\(\hept{\begin{cases}A=a.\left(-c\right).\left(-b\right)=abc\\B=b.\left(-a\right).\left(-c\right)=abc\\C=c.\left(-b\right).\left(-a\right)=abc\end{cases}}\)
Suy ra \(A=B=C\)
a+b-c = -3 (1)
a-b+c = 11 (2)
a-b-c = 11 (3)
Lấy (2) trừ (3) theo vế được : 2c = 0 => c = 0
Lấy (1) trừ (2) theo vế được : 2b-2c = -14 => b = -7
Từ (1) => a = -3 - b + c = 4
Vậy : a = 4
b = -7
c = 0
theo ta có:
a-b+c=11 (2)
a-b-c=11 (3)
từ (1) và (2)=>(a+b-c)+(a-b+c)=-3+11
=>2a=8
=>a=4
thay vào (2) và (3) ta được:-b+c=7,-b-c=-5
=>(-b+c)+(-b-c)=7+(-5)
=>-2b=2
=>b=-1
=>c=6
KL:(a,b,c)=(4;-1;6)