K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

a/ Ta có: S-7 = 72+73+...+749

Nhận thấy, S-7 có tất cả 48 số hạng. Nhóm 3 số hạng liên tiếp với nhau ta được:

S-7 = (72+73+74)+...(747+748+749) = 72(1+7+72)+75(1+7+72)+...+747(1+7+72)=(1+7+72)(72+75+...+747)

=> S - 7 = 19.(72+75+...+747)  => S-7 chia hết cho 19

b/ S = 7+72+73+...+749  => 7S=72+73+...+749+750

=> 7S-S=(72+73+...+749+750)-(7+72+73+...+749)

<=> 6S=750 - 7  => 6S-7 = 750  => Đpcm

21 tháng 3 2018

Câu b) là 6S+7 thì đúng hơn

17 tháng 7 2016

B,

\(7S=7^2+7^3+.......+7^{50}\)

\(7S-S=\left(7^2+7^3+.....+7^{49}\right)-\left(7+7^2+........+7^{50}\right)\)

\(\Rightarrow6S=7^{50}-7\)

\(\Rightarrow6S+7=7^{50}-7+7=7^{50}\)

Vậy 6S+7 là lũy thừa của 7

17 tháng 7 2016

a) S = 7 + 72 + 73 + 74 + ... + 748 + 749 ( có 49 số, 49 chia 3 dư 1)

S = 7 + (72 + 73 + 74) + (75 + 76 + 77) + ... + (747 + 748 + 749)

S = 7 + 72.(1 + 7 + 72) + 75.(1 + 7 + 72) + ... + 747.(1 + 7 + 72)

S = 7 + 72.57 + 75.57 + ... + 747.57

S = 7 + 57.(72 + 75 + ... + 747)

S = 7 + 19.3.(72 + 75 + ... + 747)

S - 7 = 19.3.(72 + 75 + ... + 747) chia hết cho 19

=> đpcm

b) S = 7 + 72 + 73 + ... + 748 + 749

7S = 72 + 73 + 74 + ... + 749 + 750

7S - S = 750 - 7 = 6S

6S + 7 = 750 là lũy thừa của 7

=> đpcm

Đề bài bn chép sai, mk sửa lại rùi đó

26 tháng 7 2023

S=1+7+...+72021

S=(1+7)+(72+73)+...+(72020+72021)

  =(1+7)+72(1+7)+...+72020(1+7)⋮8

Để chứng minh S chia hết cho 57, ta cần chứng minh (7^2021 - 1) chia hết cho 342 (vì 342 = 57 * 6).

Ta biểu diễn 7^2021 - 1 dưới dạng (7^3)^673 - 1, và áp dụng công thức a^3 - b^3 = (a - b)(a^2 + ab + b^2), ta có:

(7^3)^673 - 1 = (7^3 - 1)((7^3)^2 + 7^3 + 1)

Vì 7^3 - 1 = 342 và (7^3)^2 + 7^3 + 1 = 342^2 + 342 + 1 = 117649 + 342 + 1 = 118992 nên ta có:

(7^3)^673 - 1 = 342 * 118992

Vì 342 chia hết cho 57 nên (7^3)^673 - 1 chia hết cho 57.

Do đó S = (7^2021 - 1)/6 chia hết cho 57.

 

26 tháng 7 2023

57 hay 56 vậy bạn?

 

7 tháng 8 2016

b, a+b chia hết cho 5 nên 4a+4b chia hết cho 5

Nên ta viết: 4a+4b+15b

thấy 15b chia hết cho 5 và 4a+4b chia hết cho 5

Nên 4a+19b chia hết cho 5