K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

Ta có : 

\(a+b+c=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)^2=0^2\)

\(\Leftrightarrow\)\(a^2+b^2+c^2+\left(2ab+2bc+2ac\right)=0\)

\(\Leftrightarrow\)\(a^2+b^2+c^2=-\left(2ab+2bc+2ac\right)\)

Vì \(a^2+b^2+c^2\ge0\)

Nên \(-\left(2ab+2bc+2ac\right)\ge0\)

\(\Rightarrow\)\(2ab+2bc+2ac\le0\) 

\(\Rightarrow\)\(2\left(ab+bc+ac\right)\le0\)

\(\Rightarrow\)\(ab+bc+ac\le0\) ( đpcm ) 

Công thức lớp 8 chứ ko phải lớp 6 nhé 

Chúc bạn học tốt ~ 

20 tháng 3 2018

cm bđt ab+bc+ca \(\le\)\(\frac{\left(a+b+c\right)^2}{3}\)(biến đổi tương đương )

\(\Rightarrow\)ab+bc+ca \(\le\frac{0^2}{3}=0\)-đpcm

23 tháng 12 2015

Đề : ab + 4bc + ca \(\le\)

Có : a + b + c = 0 => a = - b - c

Thay vào ab + 4bc + ca \(\le\)0 ta đc:

(-b - c).b + 4bc + c.(-b - c) \(\le\) 0

=> -b2 - bc + 4bc - bc - c2 \(\le\)0

=> -b2 - c2 + 2bc \(\le\)0

=> - (b2 - 2bc + c2\(\le\) 0

=> -(b - c)2 \(\le\) 0 (luôn đúng)

Vậy ab + 4bc + ca  \(\le\) 0

1 tháng 3 2017

abc bằng 0

27 tháng 12 2020

c=c.1 thay 1 bằng a+b+c xong cô si

 

24 tháng 1 2019

bình phương pt a+b+c=0 lên ta đc a^2+b^2+c^2+...=0

mà a^2+b^2+c^2>=0

suy ra 2(ab+ac+bc) bé hơn hoặc bằng 0

hay ab+ac+bc bé hơn hoặc bằng 0

24 tháng 1 2019

cám ơn tui giải đc roi đăng lên cho có không khí thôi

23 tháng 2 2018

Xin lỗi xíu nha cái chỗ suy ra 2ab+2bc+2ac >/= 0 bị đánh lộn dấu đổi lại thành ab=bc+ca</=0 hộ nhé

18 tháng 4 2017

em dùng tính chất tổng quát này nè \(x^2\ge0\)với mọi x

như vậy ta có a+b+c=0\(\Rightarrow\left(a+b+c\right)^2=0\)\(\Leftrightarrow a^{2^{ }}+b^2+c^2+2ab+2bc+2ca=0\)mà ta luôn có \(a^2\ge0\)với mọi a;\(b^2\ge0\)với mọi b;\(c^2\ge0\)nên suy ra \(a^2+b^2+c^2\ge0\forall a,b,c\)mà \(a^2+b^2+c^2+2ab+2bc+2ca=0\Rightarrow2ab+2bc+2ca\ge0\)\(\Rightarrow\)ab+bc+ca\(\ge\)0.dấu bằng xảy ra khi và chỉ khi a=b=c=0

24 tháng 9 2015

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai, 
a,b,c là 3 số dương.

24 tháng 9 2015

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).

Vậy điều giả sử trên là sai, 
Do đó a,b,c là 3 số dương.