K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

\(a,\left(x+y\right)+\left(x-y\right)\)

\(=x+y+x-y\)

\(=\left(x+x\right)+\left(y-y\right)\)

\(=2x+0\)

\(=2x\)

\(b,\left(x+y\right)-\left(x-y\right)\)

\(=x+y-x+y\)

\(=\left(x-x\right)+\left(y+y\right)\)

\(=0+2y\)

\(=2y\)

20 tháng 3 2018

a) (x+y)+(x-y)=x+y+x-y=(x+x)+(y-y)=2x

b) (x+y)-(x-y)=x+y-x+y=(x-x)+(y+y)=2y

27 tháng 11 2018

\(1;a,x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(\Rightarrow2=1^3-3xy\)

\(\Rightarrow3xy=1-2=-1\)

\(\Rightarrow xy=-\frac{1}{3}\)

\(b,N=\left(x^3+y^3\right)\left(x+y\right)^2=2\Rightarrow\left(x^3+y^3\right)\left(x^2+2xy+y^2\right)=2\)

\(\Rightarrow x^5+2x^4y+x^3y^2+x^2y^3+2xy^4+y^5=2\)

\(\Rightarrow x^5+y^5+2xy\left(x^3+y^3\right)+x^2y^2\left(x+y\right)=2\)

\(\Rightarrow x^5+y^5+2.\frac{-1}{3}.2+\frac{1}{9}.1=2\)

\(\Rightarrow x^5+y^5=2+\frac{4}{3}-\frac{1}{9}=2+\frac{7}{9}=\frac{25}{9}\)

27 tháng 11 2018

a) \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=1\cdot\left(x^2-xy+y^2\right)=x^2-xy+y^2=2\left(1\right)\)

\(x+y=1\Rightarrow\left(x+y\right)^2=1^2\Rightarrow x^2+2xy+y^2=1\left(2\right)\)

Lấy (1) - (2) ta có : \(x^2-xy+y^2-x^2-2xy-y^2=2-1\)

\(\Leftrightarrow-3xy=1\)

\(\Leftrightarrow xy=\frac{-1}{3}\)

b) \(x+y=1\)

\(\Leftrightarrow\left(x+y\right)^5=1^5\)

\(\Leftrightarrow x^5+5x^4y+10x^2y^3+10x^3y^2+5xy^4+y^5=1\)

\(\Leftrightarrow x^5+y^5=1-\left(5x^4y+4xy^4+10x^2y^3+10x^3y^2\right)\)

\(\Leftrightarrow x^5+y^5=1-\left[5xy\left(x^3+y^3\right)+10x^2y^2\left(x+y\right)\right]\)

Từ câu a) ta có \(x\cdot y=\frac{-1}{3};x^3+y^3=2;x+y=1\)

\(\Leftrightarrow x^5+y^5=1-\left[5\cdot\left(\frac{-1}{3}\right)\cdot2+10\cdot\left(-\frac{1}{3}\right)\cdot\left(\frac{-1}{3}\right)\cdot1\right]\)

\(\Leftrightarrow x^5+y^5=1-\left(-\frac{20}{9}\right)\)

\(\Leftrightarrow x^5+y^5=\frac{29}{9}\)

22 tháng 7 2023

a) \(x+2y+\left(x-y\right)\)

\(=x+2y+x-y\)

\(=2x+y\)

b) \(2x+y-\left(3x-5y\right)\)

\(=2x+y-3x+5y\)

\(=-x+6y\)

c) \(3x^2-4y^2+6xy+7+\left(-x^2+y^2-8xy+9x+1\right)\)

\(=3x^2-4y^2+6xy+7-x^2+y^2-8xy+9x+1\)

\(=2x^2-3y^2-2xy+9x+8\)

d) \(4x^2y-2xy^2+8-\left(3x^2y+9xy^2-12xy+6\right)\)

\(=4x^2y-2xy^2+8-3x^2y-9xy^2+12xy-6\)

\(=x^2y-11xy^2+2+12xy\)

\(x-y=6\Rightarrow\left(x-y\right)^2=36\)

\(\Rightarrow x^2-2xy+y^2=36\)

\(\Rightarrow x^2+y^2-2.30=36\)

\(\Rightarrow x^2+y^2=96\)

Ta có : \(x^2+2xy+y^2=96+60=156\Rightarrow\left(x+y\right)^2=156\)

\(\Rightarrow x+y=\sqrt{156}=2\sqrt{39}\)

Ta có : \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)

Tự thế vào nha

8 tháng 8 2016

a) Dùng hằng đẳng thức: (x+y)2 - (x-y)2 = 4xy  (1)

Thay x - y = 6 và xy = 30 vào (1), ta được:

  \(\left(x+y\right)^2-6^2=4.30\)  \(\Rightarrow\left(x+y\right)^2-36=120\)  

\(\Rightarrow\left(x+y\right)^2=120+36=156\)  \(\Rightarrow\orbr{\begin{cases}x+y=2\sqrt{39}\\x+y=-2\sqrt{39}\end{cases}}\)

Vì x>y>0 nên \(x+y=2\sqrt{39}\)

Suy ra: \(x^2-y^2=\left(x+y\right)\left(x-y\right)=2\sqrt{39}.6=12\sqrt{39}\)

b) Ta có: \(x^4+y^4=x^4-2x^2y^2+y^4+2x^2y^2=\left(x^2-y^2\right)^2+\left(\sqrt{2}xy\right)^2\) (2)

Thay \(x^2-y^2=12\sqrt{39}\)(câu a)  và \(xy=30\) vào (2), ta được:

\(x^4+y^4=\left(12\sqrt{39}\right)^2+\left(\sqrt{2}.30\right)^2=7416\)

Đề của bạn làm sao ý!! MÌNH KHÔNG CHẮC LÀM ĐÚNG KHÔNG NỮA NHƯNG MONG BẠN NHA. 

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a)

\(\dfrac{1}{2}{x^2}.\dfrac{6}{5}{x^3} = \dfrac{1}{2}.\dfrac{6}{5}.{x^2}.{x^3} = \dfrac{3}{5}{x^5}\);                                                   

b)

\(\begin{array}{l}{y^2}(\dfrac{5}{7}{y^3} - 2{y^2} + 0,25) = {y^2}.\dfrac{5}{7}{y^3} - {y^2}.2{y^2} + {y^2}.0,25)\\ = \dfrac{5}{7}{y^5} - 2{y^4} + 0,25{y^2}\end{array}\);

c)

\(\begin{array}{l}(2{x^2} + x + 4)({x^2} - x - 1) \\= 2{x^2}({x^2} - x - 1) + x({x^2} - x - 1) + 4({x^2} - x - 1)\\ = 2{x^4} - 2{x^3} - 2{x^2} + {x^3} - {x^2} - x + 4{x^2} - 4x - 4 \\= 2{x^4} - {x^3} + {x^2} - 5x - 4\end{array}\);                                                               

d)

\(\begin{array}{l}(3x - 4)(2x + 1) - (x - 2)(6x + 3) \\= 3x(2x + 1) - 4(2x + 1) - x(6x + 3) + 2(6x + 3)\\ = 6{x^2} + 3x - 8x - 4 - 6{x^2} - 3x + 12x + 6\\ = 4x + 2\end{array}\).

24 tháng 7 2023

\(a.2x\left(x-1\right)-3\left(x^2+4x\right)+x\left(x+2\right)\) 

\(=2x^2-2x-3x^2-12x+x^2+2x\) 

\(=-12x\) 

\(b.\left(2x-3\right)\left(3x+5\right)-\left(x-1\right)\left(6x+2\right)+3-5x\) 

\(=6x+10x-9x^2-15-6x^2-2x-6x-2+3-5x\) 

\(=-15x^2+3x-14\) 

\(c.\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-y^2\right)\) 

\(=x^3-y^3-x^3+y^3+x^2y-y^3\)

\(=y^3+x^2y\) 

2 tháng 9 2021

a) \(3\left(2x-3\right)+5\left(x+2\right)=6x-9+5x+10=11x+1\)

b) \(3x\left(2x-8\right)+\left(6x+2\right)\left(5-x\right)=6x^2-24x+30x-6x^2+10-2x=4x+10\)

c) \(\left(x-3\right)\left(x+3\right)-\left(x-5\right)^2=x^2-9-x^2+10x-25=10x-34\)

d) \(\left(x-y\right)^3-\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-3x^2y+3xy^2-y^3-x^3+y^3=3xy^2-3x^2y\)

10 tháng 9 2020

Ta có

\(\frac{x}{5}=\frac{y}{6};\frac{y}{8}=\frac{z}{11}\Rightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{66}=k\Rightarrow\hept{\begin{cases}x=40k\\y=48k\\z=66k\end{cases}}\)

Vì \(x+y=44\)

\(\Rightarrow40k+48k=44\)

\(\Rightarrow88k=44\)

\(\Rightarrow k=\frac{1}{2}\)

Với \(k=1\Rightarrow\hept{\begin{cases}x=20\\y=24\\z=33\end{cases}}\)

Ta có 

\(A=x-y-2z\)

\(\Leftrightarrow A=20-24-2\cdot33=-70\)

Vậy A=-70

Lâu k làm dạng này nên trình bày có chỗ nào ngáo quá thì thông cảm

c: \(=\dfrac{x^3+2x^2+x^2+2x-10x-20}{x+2}\)

\(=x^2+x-10\)