Tìm GTNN của D=y2+2|x-1|-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(B=x^2+2x+y^2-4y+6\)
\(=x^2+2x+1+y^2-4y+4+1\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy: \(B_{min}=1\) khi (x,y)=(-1;2)
c) Ta có: \(C=4x^2+4x+9y^2-6y-5\)
\(=4x^2+4x+1+9y^2-6y+1-7\)
\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(C_{min}=-7\) khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(A=2x^2+x=2\left(x^2+\dfrac{1}{2}x\right)=2\left(x^2+2.\dfrac{1}{4}x+\dfrac{1}{16}-\dfrac{1}{16}\right)\)
\(=2\left[\left(x+\dfrac{1}{4}\right)^2-\dfrac{1}{16}\right]\ge-\dfrac{1}{8}\) dấu"=' xảy ra<=>x=\(-\dfrac{1}{4}\)
\(B=x^2+2x+y^2-4y+6\)
\(=x^2+2x+1+y^2-4y+4+1=\left(x+1\right)^2+\left(y-2\right)^2+1\)
\(\ge1\) dấu"=" xảy ra<=>x=-1;y=2
\(C=4x^2+4x+9y^2-6y-5\)
\(=4x^2+4x+1+9y^2-6y+1-7\)
\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\)
dấu"=" xảy ra<=>x=\(-\dfrac{1}{2},y=\dfrac{1}{3}\)
\(D=\left(2+x\right)\left(x+4\right)-\left(x-1\right)\left(x+3\right)^2\)
=\(x^2+6x+8-\left(x-1\right)\left(x+3\right)^2\)
\(=\left(x+3\right)^2-1-\left(x-1\right)\left(x+3\right)^2\)
\(=\left(x+3\right)^2\left(2-x\right)-1\ge-1\)
dấu"=" xảy ra\(< =>\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
\(A=\left(4x^2-4xy+y^2\right)+\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{21}{4}\\ A=\left(2x-y\right)^2+\left(x+\dfrac{3}{2}\right)^2-\dfrac{21}{4}\ge-\dfrac{21}{4}\\ A_{min}=-\dfrac{21}{4}\Leftrightarrow\left\{{}\begin{matrix}2x=y\\x=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-3\end{matrix}\right.\)
\(B=\left[\left(x-1\right)\left(x+2\right)\right]\left[x\left(x+1\right)\right]=\left(x^2+x-2\right)\left(x^2+x\right)\\ B=\left(x^2+x\right)^2-2\left(x^2+x\right)\\ B=\left(x^2+x\right)^2-2\left(x^2+x\right)+1-1=\left(x^2+x-1\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow x^2+x-1=0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{5}{4}=0\\ \Leftrightarrow\left(x+\dfrac{1-\sqrt{5}}{2}\right)\left(x+\dfrac{1+\sqrt{5}}{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{5}}{2}\\x=\dfrac{1+\sqrt{5}}{2}\end{matrix}\right.\)
\(B=\left(x-2y\right)^2+y^2+2x+6y+2046=\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]+\left(y^2+10y+25\right)+2020=\left(x-2y+1\right)^2+\left(y+5\right)^2+2020\ge2020\)
\(minB=2020\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-11\\y=-5\end{matrix}\right.\)