K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

793476480

14 tháng 3 2020

2.9241805e+26

hihi

9 tháng 7 2017

Ta có: \(A=1.3+2.4+3.5+4.6+...+99.101+100.102\)

\(A=1.\left(1+2\right)+2.\left(2+2\right)+3.\left(3+2\right)+4.\left(4+2\right)+....+99.\left(99+2\right)+100.\left(100+2\right)\)

\(A=\left(1^2+2^2+3^2+4^2+...+99^2+100^2\right)+\left(2+4+6+8+...+198+200\right)\)Đặt \(B=1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\)

\(\Rightarrow B=\left(1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\right)-2^2.\left(1^2+2^2+3^2+4^2+5^2+....+49^2+50^2\right)\)Tính dãy tổng quát \(C=1^2+2^2+3^2+4^2+5^2+...+n^2\)

\(C=1\left(0+1\right)+2\left(1+1\right)+3.\left(2+1\right)+4.\left(3+1\right)+5\left(4+1\right)+...+n\left[\left(n-1\right)+1\right]\)

\(C=\left[1.2+2.3+3.4+4.5+...+\left(n-1\right).n\right]+\left(1+2+3+4+5+....+n\right)\)

\(C=n.\left(n+1\right).\left[\left(n-1\right):3+1:2\right]=n.\left(n+1\right).\left(2n+1\right):6\)

Áp dụng vào B ta được:

\(B=100.101.201:6-4.50.51.101:6=166650\)

\(\Rightarrow A=166650+\left(200+2\right).100:2\)

\(\Rightarrow A=166650+10100=176750\)

Vậy A = 176750

Chúc bạn học tốt!!

8 tháng 12 2019

a, \(\left(x+1\right)^3:\left(x+1\right)=4\)

\(\Leftrightarrow\left(x+1\right)^2=4\)

\(\Leftrightarrow\left(x+1\right)^2=2^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Vậy .....

b, \(3^x+60=87\)

\(\Leftrightarrow3^x=87-60\)

\(\Leftrightarrow3^x=27\)

\(\Leftrightarrow3^x=3^3\)

\(\Leftrightarrow x=3\)

Vậy ...

c, (Viết cái đề khó nhìn quá à)

d, \(2^x-64=2^6\)

\(\Leftrightarrow2^x-64=64\)

\(\Leftrightarrow2^x=64+64\)

\(\Leftrightarrow2^x=128\)

\(\Leftrightarrow2^x=2^7\)

\(\Leftrightarrow x=7\)

Vậy ...

8 tháng 12 2019

Cảm ơn ạ

19 tháng 12 2022

\(9+2+5+3+7+8+4+2+9+6+4+65+6+7+4+6+3+7+4+8+5+9+08+87+1+2+3+4+2+3+2+5+6+767+5+75+6+4+6+5+66+5+7+546+46+43+6+3+6+4+6+7+8878+68+68+6+7+9+9=10961\)

20 tháng 9 2023

ủa gì dợ

1: \(=\dfrac{1}{29\cdot30}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{28\cdot29}\right)\)

\(=\dfrac{1}{29\cdot30}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{28}-\dfrac{1}{29}\right)\)

\(=\dfrac{1}{29\cdot30}-\dfrac{28}{29}=\dfrac{1-28\cdot30}{870}=\dfrac{-859}{870}\)

1. 2006/987654321 + 2007/246813579 = 2007/246813579 + 2006/987654321

=>

2.

3 - (5.3/8 + X - 7 . 5/24) : 6 . 2/3 =2

3 - (15/8 + X - 35/24) : 4 = 2

3 - (15/8 + X - 35/24) = 2 . 4

3 - (15/8 + X - 35/24) = 8

15/8 + X - 35/24 = 3 - 8

15/8 + X - 35/24 = -5

15/8 + X = -5 + 35/24

15/8 + X = -85/24

X = -85/24 - 15/8

X = -65/12

8 tháng 8 2016

Chính xác không bạn

30 tháng 9 2015

Gọi tổng là X, ta có :

X = 1+2+3+4+5+6+7+8+9+10+11+12+1+1345+6+544+435+22+00+34+567+13+7+6+9+8+0+6+5+4+3+4+5+6+66+6+2+3+8888+666+1000+87+98 !

Đây là bài toán hay đấy !

12 tháng 4 2017

a, \(A=\dfrac{1}{3}.\dfrac{-6}{-3}.\dfrac{-9}{10}.\dfrac{-13}{36}\)

\(A=\dfrac{1.\left(-6\right).\left(-9\right).\left(-13\right)}{3.13.10.36}\)

\(A=\dfrac{-1}{10.2}\)

\(A=\dfrac{-1}{20}\)

b, \(B=\dfrac{-1}{3}.\dfrac{-15}{17}.\dfrac{34}{45}\)

\(B=\dfrac{\left(-1\right).\left(-15\right).34}{3.17.45}\)

\(B=\dfrac{2}{3.3}\)

\(B=\dfrac{2}{9}\)

c, \(C=\dfrac{1}{3}.\dfrac{4}{5}+\dfrac{1}{3}.\dfrac{6}{5}+\dfrac{2}{3}\)

\(C=\dfrac{1}{3}.\left(\dfrac{4}{5}+\dfrac{6}{5}\right)+\dfrac{2}{3}\)

\(C=\dfrac{1}{3}.2+\dfrac{2}{3}\)

\(C=\dfrac{2}{3}+\dfrac{2}{3}\)

\(C=\dfrac{4}{3}\)

d, \(D=\dfrac{-5}{6}.\dfrac{4}{19}+\dfrac{-7}{12}.\dfrac{4}{19}-\dfrac{40}{57}\)

\(D=\dfrac{4}{19}.\left(\dfrac{-5}{6}+\dfrac{-7}{12}\right)-\dfrac{40}{57}\)

\(D=\dfrac{4}{19}.\dfrac{-17}{12}-\dfrac{40}{57}\)

\(D=\dfrac{-17}{57}-\dfrac{40}{57}\)

\(D=\dfrac{-57}{57}=-1\)

e, \(E=\dfrac{3}{7}.\dfrac{9}{26}-\dfrac{1}{14}.\dfrac{1}{13}-\dfrac{1}{7}\)

\(E=\dfrac{3}{7}.\dfrac{9}{26}-\left(\dfrac{1}{14}.\dfrac{1}{13}+\dfrac{1}{7}\right)\)

\(E=\dfrac{3}{7}.\dfrac{9}{26}-\left(\dfrac{1}{182}+\dfrac{1}{7}\right)\)

\(E=\dfrac{3}{7}.\dfrac{9}{26}-\dfrac{27}{182}\)

\(E=\dfrac{27}{182}-\dfrac{27}{182}\)

\(E=0\)