1+2+3+6+5+4+9++87+56526+6584+565648+1238520+...\(\times\)54686+...+987654321
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=1.3+2.4+3.5+4.6+...+99.101+100.102\)
\(A=1.\left(1+2\right)+2.\left(2+2\right)+3.\left(3+2\right)+4.\left(4+2\right)+....+99.\left(99+2\right)+100.\left(100+2\right)\)
\(A=\left(1^2+2^2+3^2+4^2+...+99^2+100^2\right)+\left(2+4+6+8+...+198+200\right)\)Đặt \(B=1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\)
\(\Rightarrow B=\left(1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\right)-2^2.\left(1^2+2^2+3^2+4^2+5^2+....+49^2+50^2\right)\)Tính dãy tổng quát \(C=1^2+2^2+3^2+4^2+5^2+...+n^2\)
\(C=1\left(0+1\right)+2\left(1+1\right)+3.\left(2+1\right)+4.\left(3+1\right)+5\left(4+1\right)+...+n\left[\left(n-1\right)+1\right]\)
\(C=\left[1.2+2.3+3.4+4.5+...+\left(n-1\right).n\right]+\left(1+2+3+4+5+....+n\right)\)
\(C=n.\left(n+1\right).\left[\left(n-1\right):3+1:2\right]=n.\left(n+1\right).\left(2n+1\right):6\)
Áp dụng vào B ta được:
\(B=100.101.201:6-4.50.51.101:6=166650\)
\(\Rightarrow A=166650+\left(200+2\right).100:2\)
\(\Rightarrow A=166650+10100=176750\)
Vậy A = 176750
Chúc bạn học tốt!!
a, \(\left(x+1\right)^3:\left(x+1\right)=4\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\left(x+1\right)^2=2^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy .....
b, \(3^x+60=87\)
\(\Leftrightarrow3^x=87-60\)
\(\Leftrightarrow3^x=27\)
\(\Leftrightarrow3^x=3^3\)
\(\Leftrightarrow x=3\)
Vậy ...
c, (Viết cái đề khó nhìn quá à)
d, \(2^x-64=2^6\)
\(\Leftrightarrow2^x-64=64\)
\(\Leftrightarrow2^x=64+64\)
\(\Leftrightarrow2^x=128\)
\(\Leftrightarrow2^x=2^7\)
\(\Leftrightarrow x=7\)
Vậy ...
\(9+2+5+3+7+8+4+2+9+6+4+65+6+7+4+6+3+7+4+8+5+9+08+87+1+2+3+4+2+3+2+5+6+767+5+75+6+4+6+5+66+5+7+546+46+43+6+3+6+4+6+7+8878+68+68+6+7+9+9=10961\)
1: \(=\dfrac{1}{29\cdot30}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{28\cdot29}\right)\)
\(=\dfrac{1}{29\cdot30}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{28}-\dfrac{1}{29}\right)\)
\(=\dfrac{1}{29\cdot30}-\dfrac{28}{29}=\dfrac{1-28\cdot30}{870}=\dfrac{-859}{870}\)
1. 2006/987654321 + 2007/246813579 = 2007/246813579 + 2006/987654321
=>
2.
3 - (5.3/8 + X - 7 . 5/24) : 6 . 2/3 =2
3 - (15/8 + X - 35/24) : 4 = 2
3 - (15/8 + X - 35/24) = 2 . 4
3 - (15/8 + X - 35/24) = 8
15/8 + X - 35/24 = 3 - 8
15/8 + X - 35/24 = -5
15/8 + X = -5 + 35/24
15/8 + X = -85/24
X = -85/24 - 15/8
X = -65/12
Gọi tổng là X, ta có :
X = 1+2+3+4+5+6+7+8+9+10+11+12+1+1345+6+544+435+22+00+34+567+13+7+6+9+8+0+6+5+4+3+4+5+6+66+6+2+3+8888+666+1000+87+98 !
Đây là bài toán hay đấy !
a, \(A=\dfrac{1}{3}.\dfrac{-6}{-3}.\dfrac{-9}{10}.\dfrac{-13}{36}\)
\(A=\dfrac{1.\left(-6\right).\left(-9\right).\left(-13\right)}{3.13.10.36}\)
\(A=\dfrac{-1}{10.2}\)
\(A=\dfrac{-1}{20}\)
b, \(B=\dfrac{-1}{3}.\dfrac{-15}{17}.\dfrac{34}{45}\)
\(B=\dfrac{\left(-1\right).\left(-15\right).34}{3.17.45}\)
\(B=\dfrac{2}{3.3}\)
\(B=\dfrac{2}{9}\)
c, \(C=\dfrac{1}{3}.\dfrac{4}{5}+\dfrac{1}{3}.\dfrac{6}{5}+\dfrac{2}{3}\)
\(C=\dfrac{1}{3}.\left(\dfrac{4}{5}+\dfrac{6}{5}\right)+\dfrac{2}{3}\)
\(C=\dfrac{1}{3}.2+\dfrac{2}{3}\)
\(C=\dfrac{2}{3}+\dfrac{2}{3}\)
\(C=\dfrac{4}{3}\)
d, \(D=\dfrac{-5}{6}.\dfrac{4}{19}+\dfrac{-7}{12}.\dfrac{4}{19}-\dfrac{40}{57}\)
\(D=\dfrac{4}{19}.\left(\dfrac{-5}{6}+\dfrac{-7}{12}\right)-\dfrac{40}{57}\)
\(D=\dfrac{4}{19}.\dfrac{-17}{12}-\dfrac{40}{57}\)
\(D=\dfrac{-17}{57}-\dfrac{40}{57}\)
\(D=\dfrac{-57}{57}=-1\)
e, \(E=\dfrac{3}{7}.\dfrac{9}{26}-\dfrac{1}{14}.\dfrac{1}{13}-\dfrac{1}{7}\)
\(E=\dfrac{3}{7}.\dfrac{9}{26}-\left(\dfrac{1}{14}.\dfrac{1}{13}+\dfrac{1}{7}\right)\)
\(E=\dfrac{3}{7}.\dfrac{9}{26}-\left(\dfrac{1}{182}+\dfrac{1}{7}\right)\)
\(E=\dfrac{3}{7}.\dfrac{9}{26}-\dfrac{27}{182}\)
\(E=\dfrac{27}{182}-\dfrac{27}{182}\)
\(E=0\)