tìm các số tự nhiên a,b(a khác 0)thỏa mãn :1/a-b/6=1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử a<b<c
=> 1/a > 1/b > 1/c
=> 1/a + 1/a + 1/a > 4/5 > 1/c + 1/c + 1/c
=> 3.1/a > 4/5 > 3 . 1/c
Đến đây bạn có thể tụ làm đc rùi đó <3
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{3}\Rightarrow3a+3b=ab\Rightarrow3a=b\left(a-3\right)\Rightarrow b=\frac{3a}{a-3}\)
\(\Rightarrow b=\frac{3\left(a-3\right)+9}{a-3}=3+\frac{9}{a-3}\left(a\ne3\right)\) (*)
Do a,b nguyên nên a-3 phải là ước của 9
\(\Rightarrow\left(a-3\right)=\left\{-9;-3;-1;1;3;9\right\}\Rightarrow a=\left\{-6;0;2;4;6;12\right\}\) Đối chiếu với điều kiện đề bài
\(\Rightarrow a=\left\{2;4;6;12\right\}\) Thay các giá trị của a vào biểu thức (*) để tìm các giá trị tương ứng của b. Bạn tự làm nốt nhé!
Tìm các bộ 3 số tự nhiên a, b, c khác 0 thỏa mãn:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)
abc = ab + bc + ac
Nếu a = b = c = 0 => thỏa mãn
Nếu a, b, c khác 0
=> Ta có:
1 = (ab + bc + ca)/abc = 1/a + 1/b + 1/c
Vậy {a; b; c} là tập hợp của {2; 3; 6}; {3; 3; 3}
Mình dung Cô-si cũng cm được nhưng ra a và b không thỏa mãn đk thuộc N* nên ko bt có đúng ko :))
\(\frac{1}{a}-\frac{b}{6}=\frac{1}{3}\)
=>\(\frac{1}{a}=\frac{1}{3}+\frac{b}{6}=\frac{2+b}{6}\)
=> a(2+b)= 1. 6 = 6
=> \(a;b+2\inƯ_{\left(6\right)}=\left\{1,2,3,6\right\}\)
Lập bảng xét các trường hợp, ta sẽ có các trường hợp (a, b) = (1,4); (2, 1); (3,0)
trả lời nhanh giùm mik sẽ cho