Biết n! = 1.2.3...n. ( n\(\in\)N , n\(\ge\)2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
uses crt;
var n,i,t1,t2:integer;
begin
clrscr;
write('Nhap n='); readln(n);
t1:=0;
for i:=1 to n do
t1:=t1+i*(i+1)*(i+2);
t2:=0;
for i:=1 to n do
begin
if i mod 2<>0 then t2:=t2+i*(i+1)*(i+2)
else t2:=t2-i*(i+1)*(i+2);
end;
writeln('T1=',t1);
writeln('T2=',t2);
readln;
end.
Bài 2:
uses crt;
var i,dem,n:integer;
begin
clrscr;
write('Nhap n='); readln(n);
dem:=0;
writeln('Cac uoc cua mot so ',n,' la: ');
for i:=1 to n do
if n mod i=0 then
begin
write(i:4);
dem:=dem+1;
end;
writeln;
writeln('So luong uoc cua ',n,' la: ',dem);
readln;
end.
Với \(n=1\Rightarrow P=6\)
\(n=2\Rightarrow P=30\)
Tất cả đều ko phải số chính phương
Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30
4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)
4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30
4A = 28.29.30.31 - 0.1.2.3
4A = 28.29.30.31
\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)
Theo cách tính trên ta dễ dàng tính được:
1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)
Lời giải:
\(\frac{n-1}{n!}=\frac{n}{n!}-\frac{1}{n!}=\frac{1}{(n-1)!}-\frac{1}{n!}\). Do đó:
\(\text{VT}=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-....+\frac{1}{(n-1)!}-\frac{1}{n!}=1-\frac{1}{n!}< 1\)
Ta có đpcm.
n=1.2.3...n (Biết n ≥ 2)
Nên n= 1.2.3...n
n= 1.2.3.0
n=0