K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(\left(x+y\right)^2-\left(x-y\right)^2=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)=2xy+2xy=4xy\)

8 tháng 10 2019

\(VT=-\left(x+y\right)^2-\left(x-y\right)^2\)

\(=-x^2-2xy-y^2-x^2+2xy-y^2=4xy=VP\)

NV
4 tháng 12 2021

\(x^2-xy+y^2=\dfrac{1}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)

\(\Rightarrow\sqrt{x^2-xy+y^2}\ge\sqrt{\dfrac{1}{4}\left(x+y\right)^2}=\dfrac{1}{2}\left(x+y\right)\)

Tương tự: \(\sqrt{y^2-yz+z^2}\ge\dfrac{1}{2}\left(y+z\right)\)\(\sqrt{z^2-zx+x^2}\ge\dfrac{1}{2}\left(z+x\right)\)

Cộng vế:

\(Q\ge\dfrac{1}{2}\left(x+y\right)+\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{2}\left(z+x\right)=x+y+z=3\) (đpcm)

NV
29 tháng 9 2019

Biến đổi tương đương:

\(\Leftrightarrow4x^2+4y^2+4z^2\ge2x^2+2y^2+2z^2+2xy+2yz+2zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y=z\)

29 tháng 9 2019

A no thơ quay nhưng lại không hay:P(Another way)

\(BĐT\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\) (biến đổi tương đương thôi)

\(\Leftrightarrow\frac{3}{4}\left(x-y\right)^2+\frac{1}{4}\left(x+y-2z\right)^2\ge0\) (true)

Đẳng thức xảy ra khi x =y = z

P/s: cách này làm màu thôi :D

AH
Akai Haruma
Giáo viên
5 tháng 8 2017

Lời giải:

Đặt \(\left ( \frac{x}{y},\frac{y}{z},\frac{z}{x} \right )=(a,b,c)\Rightarrow abc=1\)

Bài toán tương đương với: Cho \(a,b,c>0\)\(abc=1\). CMR

\(a^2+b^2+c^2\geq a+b+c\)

Thật vậy.

Áp dụng BĐT AM-GM: \(a+b+c\geq 3\sqrt[3]{abc}=3\sqrt[3]{1}=3(1)\)

Theo hệ quả của BĐT Am-Gm:

\(a^2+b^2+c^2\geq ab+bc+ac\Rightarrow 3(a^2+b^2+c^2)\geq a^2+b^2+c^2+2(ab+bc+ac)\)

\(\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}\)

Kết hợp với \((1)\Rightarrow a^2+b^2+c^2\geq a+b+c\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=1\Leftrightarrow x=y=z\)