Cm √(x^2+y^2)+√(y^2+z^2)+√(z^2+x^2)=<√6(x^2+t^2+z^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+y\right)^2-\left(x-y\right)^2=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)=2xy+2xy=4xy\)
\(VT=-\left(x+y\right)^2-\left(x-y\right)^2\)
\(=-x^2-2xy-y^2-x^2+2xy-y^2=4xy=VP\)
\(x^2-xy+y^2=\dfrac{1}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)
\(\Rightarrow\sqrt{x^2-xy+y^2}\ge\sqrt{\dfrac{1}{4}\left(x+y\right)^2}=\dfrac{1}{2}\left(x+y\right)\)
Tương tự: \(\sqrt{y^2-yz+z^2}\ge\dfrac{1}{2}\left(y+z\right)\); \(\sqrt{z^2-zx+x^2}\ge\dfrac{1}{2}\left(z+x\right)\)
Cộng vế:
\(Q\ge\dfrac{1}{2}\left(x+y\right)+\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{2}\left(z+x\right)=x+y+z=3\) (đpcm)
Biến đổi tương đương:
\(\Leftrightarrow4x^2+4y^2+4z^2\ge2x^2+2y^2+2z^2+2xy+2yz+2zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y=z\)
A no thơ quay nhưng lại không hay:P(Another way)
\(BĐT\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\) (biến đổi tương đương thôi)
\(\Leftrightarrow\frac{3}{4}\left(x-y\right)^2+\frac{1}{4}\left(x+y-2z\right)^2\ge0\) (true)
Đẳng thức xảy ra khi x =y = z
P/s: cách này làm màu thôi :D
Lời giải:
Đặt \(\left ( \frac{x}{y},\frac{y}{z},\frac{z}{x} \right )=(a,b,c)\Rightarrow abc=1\)
Bài toán tương đương với: Cho \(a,b,c>0\) và \(abc=1\). CMR
\(a^2+b^2+c^2\geq a+b+c\)
Thật vậy.
Áp dụng BĐT AM-GM: \(a+b+c\geq 3\sqrt[3]{abc}=3\sqrt[3]{1}=3(1)\)
Theo hệ quả của BĐT Am-Gm:
\(a^2+b^2+c^2\geq ab+bc+ac\Rightarrow 3(a^2+b^2+c^2)\geq a^2+b^2+c^2+2(ab+bc+ac)\)
\(\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}\)
Kết hợp với \((1)\Rightarrow a^2+b^2+c^2\geq a+b+c\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=1\Leftrightarrow x=y=z\)