CMR: các số có dạng \(\overline{abcabc}\)luôn chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.11.91⋮11\)
\(\Rightarrow\overline{abcabc}⋮11\)
Ta có \(\overline{abcabc}=\overline{abc}.1001\)
\(=\overline{abc}.11.91⋮11\)
\(=>\overline{abcabc}⋮11\left(dpcm\right)\)
Ta có: \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.91.11⋮11\)
\(\Rightarrow\overline{abcabc}⋮11\left(đpcm\right)\)
Vậy...
ta có : abcabc=abc.1000+abc=abc.(1000+1)=abc.1001=abc.91.11 vì 11 chia hết cho 11 nên abc.91.11 chia hết cho 11 vậy số abcabc lúc nào cũng chia hết cho 11
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
\(\overline{abcabc}\)
\(=10^5\cdot a+10^4\cdot b+10^3\cdot c+10^2\cdot a+10^1\cdot b+10^0\cdot c\)
\(=100100\cdot a+10010b+1001c\)
\(=91\left(1100a+110b+11c\right)⋮91\)
a) aa = a.11 chia hết cho 11
b) aaa = 100.a+10 a+a = 111.a chia hết cho 37 (vì 111 chia hết cho 37)
c) aaaaaa = 111111.a chia hết cho 37 (vì 111111 chia hết cho 37)
d) abcabc = 100000a+10000b+1000c+100a+10b+c = 100100.a+10010b+1001c
ta thấy 100100.a chia hết cho 11 ( vì 100100 chia hết cho 11)
10010b chia hết cho 11 ( vì 10010 chia hết cho 11)
1001c chia hết cho 11 ( vì 1001 chia hết cho 11)
Vậy 100100.a+10010b+1001c chia hết cho 11 hay abcabc chia hết cho 11
e) C aaaaaa = 111111a chia hết cho 7 ( 111111 chia hết cho 7)
a) aaaaaa = a . 111111 = a .15873 . 7 = ( a . 15873 ) . 7 chia hết cho 7
Vậy aaaaaa luôc chia hết cho 7
b)abcabc = abc . 1001 = abc . 91.11=( abc . 91 ) . 11 chia hết cho 11
Vậy abcabc bao giờ cũng chia hết cho 11
\(\overline{abcabc}=\overline{abc}\cdot1000+\overline{abc}\)
\(=\overline{abc}\cdot1001\)
\(1001⋮11\)
\(\Rightarrow\overline{abc}\cdot1001⋮11\) (đpcm)
abcabc = abc . 1000 + abc = abc . (1000 + 1)
=> abc . 1001 = abc . 99 . 11
Vì 11 chia hết cho 11 nên abc . 99 . 11 chia hết cho 11
=> abcabc lúc nào cx chia hết cho 11 (đpcm)